A neutron changes to a proton.
That depends on the nuclear decay type. For gamma decay, the identity does NOT change, but for alpha and beta, it does.
During beta decay, a neutron in the nucleus will be converted into a proton, releasing an electron (beta particle) and an antineutrino. This process increases the atomic number of the nucleus while keeping the overall mass number constant.
B. The name of the element does not change during beta decay. The atomic number (Z) increases by one unit as a neutron is converted to a proton, while the mass number (A) remains the same.
Neutron number is not conserved in radioactive decay processes. During beta decay, a neutron may convert into a proton, an electron (beta particle), and an antineutrino. This results in a change in neutron number.
During nuclear decay, an isotope of an element changes by emitting radiation, such as alpha or beta particles, or gamma rays. This process results in the isotope transforming into a different element or a different isotope of the same element. The change is necessary to achieve a more stable configuration, typically by adjusting the number of protons and neutrons in the nucleus.
The rate of decay of a radioactive element is measured by its half-life, which is the time it takes for half of a sample of the element to decay. This measurement is used to determine the stability or instability of the element and to predict its rate of decay over time.
Decay energy is the energy that has been freed during radioactive decay. When radioactive decay is ongoing it drops off some energy by means of discharging radiation.
No, the total number of nucleons in the nucleus remains constant during a decay chain. The total number of protons and neutrons may change as individual particles are emitted during decay, but the overall number of nucleons (protons and neutrons combined) remains the same within a closed system.
chemical change
Well, when an atom undergoes radioactive decay, it can change into a different element. This happens because the nucleus of the atom becomes unstable and releases particles or energy to become more stable. So, while the identity of the atom may change, it's all just a part of nature's way of finding balance and harmony in the universe.
Americium can change into neptunium through a process called alpha decay. During alpha decay, an alpha particle (helium nucleus) is emitted from the nucleus of the americium atom, resulting in the transformation of the americium atom into a neptunium atom.
During the nuclear decay of Ne-19, a positron is emitted.