mass H2O =49.2g
To determine the amount of water needed to react with 79.0 CaCN2, you need to use stoichiometry. The balanced chemical equation for the reaction is: CaCN2 + 3H2O -> CaCO3 + 2NH3 From the equation, you can see that 3 moles of water are needed to react with 1 mole of CaCN2. Calculate the moles of CaCN2 in 79.0 grams, then use the mole ratio to determine the moles of water needed. Finally, convert the moles of water to grams using the molar mass of water.
The molar mass of CaCN2 is 80.10 g/mol. To calculate the number of moles in 74.0 g, divide the given mass by the molar mass. The balanced chemical equation for the reaction would be needed to determine the stoichiometry and amount of water required to react with 74.0 g CaCN2.
63 g of water are needed.
To react with 0.373 mol of ethylene (C2H4), you need an equal number of moles of water (H2O) based on the balanced chemical equation: C2H4 + H2O → C2H5OH This means you need 0.373 mol of water to react with 0.373 mol of ethylene. To convert moles to grams, you would multiply 0.373 mol by the molar mass of water (18.015 g/mol) to get the grams needed.
To determine the grams of ethylene needed to react with 0.0126 mole of water, you need to use the balanced chemical equation for the reaction between ethylene and water. Once you have the balanced equation, use the molar ratio between ethylene and water to convert moles of water to moles of ethylene. Then, use the molar mass of ethylene to convert moles of ethylene to grams of ethylene.
Not enough information was provided. Can you please provide the rest of the information so that we may calculate the answer for you?
The balanced chemical equation for the reaction of hydrogen and oxygen to form water is 2H2 + O2 -> 2H2O. Based on the equation, for every 2 grams of hydrogen, 64 grams of oxygen are needed to form 36 grams of water. Thus, if 8 grams of hydrogen react completely with 64 grams of oxygen, the total mass of water formed would be 36 grams.
The molar mass of Li2O is 29.88 g/mol and the molar mass of H2O is 18.02 g/mol. Using stoichiometry, we find that 2.72 grams of Li2O requires 2.72 grams of water to react in a 1:1 ratio based on the balanced chemical equation.
Water does not need to react with oxygen to make water!
To calculate the number of grams of oxygen needed to react with 6.78 grams of ammonia, we first write out the balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) to form nitrogen monoxide (NO) and water (H2O). Then we use the stoichiometry of the equation to find the molar ratio between ammonia and oxygen. Finally, we convert the mass of ammonia to moles and then use the molar ratio to find the mass of oxygen needed.
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
To calculate the mass of ethylene oxide needed to react with 10 g of water, you need to determine the molar ratio of water to ethylene oxide in the balanced chemical equation for the reaction. Once you have the molar ratio, you can use it to calculate the mass of ethylene oxide needed. The molar mass of ethylene oxide is 44.05 g/mol.