Acceleration does not effect gravity. It is rather the other way round. Gravity can affect the rate of acceleration.
No effect. All masses experience the same acceleration due to gravity.
Speed and acceleration do not directly affect gravity. Gravity is a fundamental force that acts on all objects regardless of their speed or acceleration. However, an object's speed and acceleration can influence its motion within a gravitational field, such as causing it to orbit a larger body or fall towards it at an accelerated rate.
weight
On earth, the mass of an object has no effect whatsoever on its acceleration due to the force of gravity. All objects fall with the same acceleration, regardless of their mass. Any observed difference is due entirely to air resistance.
The weight is the mass multiplied by the acceleration of gravity. When weighing an object by a balance the acceleration of gravity is on both sides of weighing and hence canceling its effect and hence you get the object mass (not the weight)..
No effect whatsoever. Without air to interfere with the effects of gravity, a small feather and a large rock fall with the same acceleration.
Increasing the mass will not have a direct effect on the experimental value of the acceleration due to gravity. The acceleration due to gravity is a constant value on Earth (approximately 9.81 m/s^2), and it is not affected by the mass of the object. However, if the mass is increased, the gravitational force acting on the object will be greater, but this will not affect the acceleration due to gravity itself.
The weight is the mass multiplied by the acceleration of gravity. When weighing an object by a balance the acceleration of gravity is on both sides of weighing and hence canceling its effect and hence you get the object mass (not the weight)..
The acceleration of gravity on a planet determines how fast an object will fall when dropped, affecting the weight of objects on the surface. This acceleration also impacts the force needed for objects to stay grounded or lifted from the surface. Overall, gravity's acceleration is essential in understanding an object's behavior on the planet's surface.
Acceleration due to gravity is the force that pulls objects towards the Earth. It causes objects to accelerate at a rate of 9.81 m/s^2 towards the ground. This acceleration is responsible for the feeling of weight that we experience, and it also affects the trajectory of objects thrown or dropped.
To calculate the effect of gravity on weight, you multiply an object's mass by the acceleration due to gravity. The formula is W = m * g, where W is weight, m is mass, and g is the acceleration due to gravity (9.81 m/s^2 on Earth). The result will be in units of force (e.g. Newtons).
Gravity affects velocity by changing the acceleration of an object. As an object falls, gravity accelerates it, increasing its velocity. Without gravity, an object would move at a constant velocity.