Both can be divided into a layer of crust laying on top of the uppermost part of the mantle, which is fairly rigid and ultramafic in composition.
Oceanic lithosphere is dense enough to be forced down into the mantle. Continental lithosphere is not.
As odd as it is to think of things this way, continental lithosphere is more buoyant than oceanic lithosphere. The oceanic lithosphere is more dense.
As odd as it is to think of things this way, continental lithosphere is more buoyant than oceanic lithosphere. The oceanic lithosphere is more dense.
There are two types of lithosphere: the oceanic lithosphere and the continental lithosphere. The oceanic lithosphere exists in the ocean basins while the continental lithosphere exists in the continental crust.
As odd as it is to think of things this way, continental lithosphere is more buoyant than oceanic lithosphere. The oceanic lithosphere is more dense.
Continental lithosphere is thicker and less dense than oceanic lithosphere. Continental crust is primarily composed of granitic rock while oceanic crust is composed primarily of basaltic rock.
The density of the continental (granitic) lithosphere is lower than oceanic (basaltic) lithosphere. Consequently, due to buoyancy, the continental crust rides above the oceanic lithosphere and thus is not subducted. However, it is thought that pieces of the continental lithosphere break off and are subducted along with the oceanic lithosphere.
No, oceanic lithosphere contains more mafic rocks compared to continental lithosphere. Oceanic lithosphere is mainly composed of basalt, which is a mafic rock, whereas continental lithosphere is composed of a variety of rock types, including granitic rocks which are more felsic in composition.
Oceanic lithosphere is denser than continental lithosphere, so it is more likely to be subducted during a collision. The downward force exerted by the dense oceanic plate causes it to sink beneath the less dense continental plate. Furthermore, oceanic lithosphere is typically thinner and more malleable, making it easier to be forced beneath the continental lithosphere.
The lithosphere is composed of the oceanic and continental crusts.
Continental plates are thicker and less dense. Continental plates are mainly granitic in composition. Oceanic plates are mainly basaltic in composition. The rock of continental plates is on average, much older than the rock of the oceanic plates. The oceanic plate underlies the oceans, and the continental plate makes up the land masses. Continental plates do not subduct at convergent plate boundaries.
When oceanic lithosphere and continental lithosphere collide, the continental lithosphere may be obducted over the oceanic lithosphere or the oceanic lithosphere may be subducted under the continental lithosphere. The latter is thought to be more common. This subduction and obduction generally results in tectonic activity such as volcanoes and earthquakes.