Top Answer

First of all, even though we call them "combination locks" they are not combination locks. In fact, there is no such thing as a "combination lock", that is if you pay homage to the actual, technical meaning of the word "combination". The word combination implies that order is irrelevant, which is not the case on a combination lock. The numbers for the "combination" have a particular order, and that order makes the difference between the lock opening or not. Just because you get the numbers correct doesn't mean the lock will open unless you get them in the right order, too. A combination lock is more appropriately called a permutation lock.

Now, you want to know the number of permutations for a combination lock. This is a much more precise question.

The next thing we need to know is whether or not repeats are allowed. In combination locks it is generally the case that repeats are allowed. One number does not effect the next number. Not only do the number of possibilities remain constant for each number, but which values they can possess also remains constant.

Say for example we have a combination lock with three numbers to be set. Suppose that each of those can be the numbers 0 to 29. In this case, if the sequence 5, 6, 3 is distinct from 6, 3, 5, then we have a permutation lock. Not a combination lock. If the two sequences were the same, if both opened the lock... then its a true combination lock indeed. If the lock can open to 5, 5, 3 then repeats are allowed.

This lock has 30 unique values for each number in the sequence: 0-29. And it has 3 numbers in the sequence. If repeats are allowed then there are 303 = 27,000 permutations. If repeats are not allowed then there are 30P3 = 24,360 permutations.

🙏

0🤨

0😮

0😂

0the total number of possible combinations or outcomes in your tree diagram

In the simplest case, if A is the number of values a single element of a combination can have, and N is the number of elements in the combination, then the number of possible lock combinations is AN. For example: if you have a lock with a 4-digit numerical combination, any combination has 4 elements - the digits. Each digit can have 10 values - 0 through 9. So the total number of lock combinations is 104 or 10000. Another example: if you have the typical rotating combination padlock, a combination consists of three numbers, each of which can be 0-39. So the total number of combination shere is 403 or 64000. The calculation gets more complicated if the same number can't appear twice in the combination. In that case, there are A values for the first element, but only A-1 values for the second, A-2 values for the third, and so on. The formula in this case is A(A-1)(A-2)(...)(A-N+1) which can be written more concisely as A!/(A-N)!. For example: if you have the same rotating combination padlock as above, but know that the numbers in the combination are all different, there are 40*39*38 or 59280 possible combinations.

There are 60 possible numbers for the first number, A, in the combination (1,2,3,...,59,60).For each of outcome of A, there are 60 outcomes for the second number, B, giving a two digit combination 60x60=360 possibilities.For each of these 360 outcomes, there are 60 outcomes for the third number, C, making the number of possible combinations 360x60=21600.Or 60 possibilities x 60 possibilities x 60 possibilities = 21,600 possibilities.

If the digits can repeat, then there are 256 possible combinations. If they can't repeat, then there are 24 possibilities.

Because every combination is equally probable, but more combinations sum to seven than to any other total. There are 36 possible combinations; of these seven will produce 7, only one will give 2 and only one will give 12.

You have eight letters to work with, and can use any four of them, but only once per combination. That means that the total number of possible combinations you can make is: 8! / (8 - 4)! = 8! / 4! = 8 * 7 * 6 * 5 = 1680 So there are 1680 possible combinations.

10 * * * * * That is just plain wrong! It depends on how many numbers in each combination but there are 1 combination of 4 numbers out of 4, 4 combinations of 3 numbers out of 4, 6 combinations of 2 numbers out of 4, 4 combinations of 1 number out of 4. A grand total of 15 (= 24-1) combinations.

If you have 5 questions, each with only two possible answers, the total number of combinations is 2*2*2*2*2 or 2^5 = 32. If the questions are all multiple choice and independent (ie no filters), then the total number of combinations must be the multiple of the numbers of choices for the questions.

it is hard to say there are lot of combinations belive or not * * * * * If the previous answerer thinks 15 is a lot then true. There are 1 combination of 4 numbers out of 4, 4 combinations of 3 numbers out of 4, 6 combinations of 2 numbers out of 4, 4 combinations of 1 number out of 4. A grand total of 15 (= 24-1) combinations. Not so hard to say!

2 to the 7th power = 128 * * * * * No. That is the total number of combinations, consisting of any number of elements. The number of 2 number combinations is 7*6/2 = 21

want total answer possible of different sudoku 9 x 9 total amount only

In the short form, the total number of different combinations you can get are 64. The work to obtain that number is shown below.Let's call each of them different names. There will be starter 1, 2, 3, 4, and 5.The possible combinations are as follows for the first set of numbers:# 1,2,3,4,5 # 1,2,3,5,4 # 1,2,4,5,3 # 1,2,4,3,5 # 1,3,2,4,5 # 1,3,2,5,4 # 1,3,4,2,5 # 1,3,4,5,2 # 1,4,2,3,5 # 1,4,2,5,3 # 1,4,3,2,5 # 1,4,3,5,2 # 1,5,2,3,4 # 1,5,2,4,3 # 1,5,3,4,2 # 1,5,3,2,4 Those are the possible combinations if the starter 1 went first. Multiply the total combinations for the first set by 4, and you get a total of 64 combinations.

There is 1 combination of all ten numbers, 10 combinations of one number and of nine numbers, 45 combinations of two or eight numbers, 120 combinations of three or seven numbers, 210 combinations of four or six numbers and 252 combinations of five numbers. That is 1023 = 210 - 1 in total.

15/21= 71.43% chance. It's the number of possible throws without repetition divided by the total different combinations of dice throw. Here is a handy Combination and Permutation Calculator: http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html

270 is the total number of votes required to elect a president. No specific states are needed to make up this total and many combinations are possible.

Two, heads or tails.

*inclusive: 74 = 2401 *exclusive: 7*6*5*4 = 840

5,040Assuming that the combination uses ALL single digits from 0 to 9, then for the first digit you will be able to use all 10 numbers, for the second digit you will be able to use 9, for the third digit 8 and for the last digit 7, giving a total number of combinations of 10 x 9 x 8 x 7 = 5,040 without the same number being used more than once in each combination.

Any given Sudoku puzzle has just one solution. This is so long as the puzzle already comes with at least 17 digits already placed on the grid. If there are any less than 17 digits, then the puzzle has more than one possible solution, and therefore cannot be solved properly. The total number of possible combinations of digits on a standard sudoku grid is 6,670,903,752,021,072,936,960. However it can be argued that many of these combinations could be the same as another, only backwards or rotated. Factoring out all logical duplicates, the number of possible combinations drops to 3,359,232. This is essentially the total number of possible sudoku puzzles.

6X6=36

If the numbers contain zeros, the total number of combinations is 10,000. You can work this out easily logically: For ten single-digit numbers (0,1,2,3,4,5,6,7,8,9) then there are 10 possible 'combinations' For numbers with 2 digits then for each possible digit in the 10s column (e.g. in the 20s range) there are another 10 possible combinations (20,21,22,23,24,25,26,27, 28,29). As there are 10 possible ranges (single digits, teens, twenties, thirties etc) there will be 10 X 10 or 100 possible combinations. using the same logic, for three digits, there will be 10 X 10 X 10 or 1000 digits. And for 4 digits there will be 10 x 10 x 10 x 10 = 10,000 possible combinations. So for a number, say, with x digits, the total number of combinations of those digits will be 10 x 10 x 10..... etc with x numbers of 10s in the calculation. You can find out the number of combinations of any set of letters or numbers in the same way. as an example, to find out, say, the possible combinations of letters in the alphabet of 26 letters, then using the same method this can be given as 26 x 26 x 26 x 26............. with 26 '26's' in a row multiplied together. This gives the staggering amount of approximately 615612 followed by 31 zeros.

Right around 32.8 Billion

As the number has to start with 15, we have only 3 remaining digits to work with. There are 3 possible options for the first digit. Then out of each of these, 2 possible options for the second digit, and one option for the last. This means that in total there are 3x2x1 (6) possible combinations. These are: 15234 15243 15324 15342 15423 15432

There are 21000 - 1 combinations. Remember that in a combination the order of the numbers does not matter. That is relevant only for permutations which are not the same thing. For each combination, each one of the 1000 numbers can be in or out. So for each combination there are 1000 choices of in or out. Except that if all are out, you get a null combination - that is, a combination with no numbers. For that particular case you subtract the 1 from the total. You will have 1 combination consisting of 1000 numbers, 499500 of 2 numbers and so on. The number of combinations will be the nth row of Pascal's triangle.

That would be the number of possible combinations of men, multiplied by the number of possible combinations of men. For each subset, the total number of possible combinations will be the factorial of the number available, divided by the factorial of that number minus six. In other words:x = 10!/(10 - 6)! * 12!/(12-6)!âˆ´ x = 10!/4! * 12!/6!âˆ´ x = (10 * 9 * 8 * 7 * 6 * 5) * (12 * 11 * 10 * 9 * 8 * 7)âˆ´ x = 151200 * 665280âˆ´ x = 100590336000So there are one hundred billion, five-hundred-and-ninety million, three-hundred-and-thirty-six thousand possible jury combinations from that selection.

Trending Questions

1+1?

Asked By
Cherry
What is MiniToon's Roblox password?

Asked By
Latham VanHull
Give me food and I will live give me water and I will die what am I?

Asked By
Wiki User
How many miles are 10000 steps?

Asked By
Wiki User
How many thirds are in 10?

Asked By
Wiki User
how to grow on tiktok?

Asked By
Danyel França
How much money is 900000 pennies?

Asked By
Wiki User
How to Grow Your TikTok REALLY Fast?

Asked By
Christian Piccinini
Hottest Questions

How did chickenpox get its name?

Asked By
Wiki User
When did organ music become associated with baseball?

Asked By
Curt Eichmann
How can you cut an onion without crying?

Asked By
Leland Grant
Why don't libraries smell like bookstores?

Asked By
Veronica Wilkinson
How long will the footprints on the moon last?

Asked By
Daija Kreiger
Do animals name each other?

Asked By
Danika Abbott
Who is the longest reigning WWE Champion of all time?

Asked By
Consuelo Hauck
What was the first TV dinner?

Asked By
Roslyn Walter
Previously Viewed

How can you find the total number of possible combinations for a combination lock?

Asked By
Wiki User
Unanswered Questions

What Tagalog songs are strophic form?

Asked By
Wiki User
What are the advantages of full-view fence?

Asked By
Wiki User
Mabuti at di mabuting epekto ng pananakop na mga espanyol?

Asked By
Wiki User
Mabuti ba o masama ang naging epekto ng unang yugto ng kolonisasyon at imperyalismo?

Asked By
Wiki User
What helped protesters win the montgomerey bus boycott?

Asked By
Wiki User
How do you compare and contrast the scene between Dodong and his father and between Blas and his father?

Asked By
Wiki User
What are the name of costumes in tiklos?

Asked By
Wiki User
Are agree or disagree of research is controlled while ordinary problem solving may be done cursorily?

Asked By
Wiki User