Surface current
Which best explains the relationship between ocean currents and convection currents?(1 point) Responses Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents create a Coriolis effect that increases convection currents. Ocean currents create a Coriolis effect that increases convection currents. Convection currents use the Coriolis effect to generate ocean currents.
what are the effects of the ocean currents>
In the northern hemisphere, the Coriolis effect causes ocean currents to be deflected to the right. In the southern hemisphere, the Coriolis effect causes ocean currents to be deflected to the left. This deflection leads to the clockwise rotation of ocean currents in the northern hemisphere and counterclockwise rotation in the southern hemisphere.
The coriolis effect makes ocean currents move in a curved path.
The Coriolis effect causes moving objects on Earth, such as air currents and ocean currents, to appear to curve due to the rotation of the Earth.
The coriolis effect makes ocean currents move in a curved path.
the answer is Coriolis
the coriolis effect
In the northern hemisphere, the Coriolis effect causes currents to turn to the right. This means that ocean currents tend to flow clockwise in the northern hemisphere as a result of the Coriolis effect.
The rotation of the Earth causes the Coriolis effect, which deflects ocean currents to the right in the Northern Hemisphere. This results in ocean currents flowing clockwise in the northern part of the ocean basins. The Coriolis effect influences the direction and shape of major ocean currents like the Gulf Stream and the North Atlantic Drift.
Continental deflections,the Coriolis effect and global winds all effect surface ocean currents.
The Coriolis effect influences deep ocean currents by causing them to deflect to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. This deflection helps to create large-scale circulation patterns known as gyres, which affect the flow of deep currents. Additionally, the Coriolis effect interacts with temperature and salinity differences in ocean water, contributing to the formation and movement of thermohaline circulation, a key driver of deep ocean currents. Overall, the Coriolis effect plays a crucial role in shaping the dynamics of ocean currents and global climate systems.