As wavelength becomes longer then frequency becomes smaller. Since c = v l
Here v is (nu) the frequency and l (lambda) the wavelength, c is the velocity of the wave.
So frequency and wavelength are inversley related.
As the frequency of a wave decreases, the diffraction of the wave increases. Lower frequency waves have longer wavelengths, which makes them more prone to diffraction around obstacles. Conversely, higher frequency waves, with shorter wavelengths, exhibit less diffraction.
Frequency and wavelength are inversely related: as frequency increases, wavelength decreases, and vice versa. This means that high frequency waves have shorter wavelengths, while low frequency waves have longer wavelengths. The relationship between frequency and wavelength is governed by the wave speed, which remains constant for a given medium.
A 2MHz wave would have a longer wavelength than a 56Hz wave. This is because wavelength and frequency are inversely proportional - higher frequency waves have shorter wavelengths and lower frequency waves have longer wavelengths.
Different wavelengths of light differ in their frequency and energy levels. Shorter wavelengths have higher frequency and energy, while longer wavelengths have lower frequency and energy. This difference in energy levels is what makes different wavelengths of light appear as different colors to the human eye.
No, waves with longer wavelengths have lower frequencies and waves with shorter wavelengths have higher frequencies. Frequency is inversely proportional to wavelength in a wave.
Ultraviolet light has a higher frequency than microwaves. Ultraviolet light falls in the range of the electromagnetic spectrum with higher frequency and shorter wavelengths compared to microwaves which have lower frequency and longer wavelengths.
Waves with longer wavelengths have lower frequencies. The frequency of a wave is inversely proportional to its wavelength, so as the wavelength increases, the frequency decreases. This relationship is represented by the equation: frequency = speed of wave / wavelength.
No, wavelengths in the electromagnetic spectrum do not each have the same amount of energy. The energy of a wave is directly proportional to its frequency, so shorter wavelengths (higher frequency) have more energy than longer wavelengths (lower frequency).
False. The wavelength of a wave is inversely proportional to its frequency. This means that higher frequency waves have shorter wavelengths, and lower frequency waves have longer wavelengths.
Shorter wavelengths have more energy than longer wavelengths because they have higher frequency. According to the equation E = hf, where E is energy, h is Planck's constant, and f is frequency, energy is directly proportional to frequency. So, higher frequency (shorter wavelength) means higher energy.
High-frequency electromagnetic waves have shorter wavelengths and higher energy, appearing as shorter, more tightly packed waves. Low-frequency electromagnetic waves have longer wavelengths and lower energy, appearing as longer, more spread out waves.
Gamma rays and radio waves are both electromagnetic waves. Radio frequency waves are a lower frequency, so they have a longer wave length.