answersLogoWhite

0

The change in potential energy is equal to mass*gravity*change in height

What else can I help you with?

Related Questions

Which variable is not required to calculate the Gibbs free-energy change for a chemical reaction?

The variable that is not required to calculate the Gibbs free-energy change for a chemical reaction is the temperature.


How to calculate the change in thermal energy in a system?

To calculate the change in thermal energy in a system, you can use the formula: Change in thermal energy mass x specific heat capacity x change in temperature. This formula takes into account the mass of the system, the specific heat capacity of the material, and the change in temperature.


How can you calculate changes in thermal energy?

To calculate changes in thermal energy, you can use the formula Q = mcΔT, where Q represents the thermal energy, m is the mass of the object, c is the specific heat capacity, and ΔT is the change in temperature. Multiplying the mass, specific heat capacity, and change in temperature can give you the change in thermal energy.


What equation is used to calculate the free energy change of a reaction?

The equation used to calculate the free energy change of a reaction is ΔG = ΔH - TΔS, where ΔG is the change in free energy, ΔH is the change in enthalpy, T is the temperature in Kelvin, and ΔS is the change in entropy.


How to calculate the change in enthalpy using bond energies?

To calculate the change in enthalpy using bond energies, you need to subtract the total energy required to break the bonds in the reactants from the total energy released when the bonds are formed in the products. This calculation helps determine the overall energy change in a chemical reaction.


Who to you calculate an endothermic?

Endothermic reactions absorb heat energy from the surroundings. To calculate the energy change in an endothermic reaction, you subtract the initial energy of the reactants from the final energy of the products. The resulting positive value indicates that the reaction absorbed energy.


How can one use bond energy to calculate the enthalpy change in a chemical reaction?

Bond energy can be used to calculate the enthalpy change in a chemical reaction by comparing the total energy needed to break the bonds in the reactants with the total energy released when new bonds form in the products. The difference between these two values represents the enthalpy change of the reaction.


What does delta mean in the equation for thermal energy?

Delta in the equation for thermal energy typically represents a change or difference, such as a change in temperature or heat energy. It signifies the final state of the system minus the initial state to calculate the thermal energy change.


What is the Delta E chemistry formula used to calculate the change in energy of a chemical reaction?

The Delta E formula in chemistry is used to calculate the change in energy of a chemical reaction. It is represented as E E(final state) - E(initial state), where E is the change in energy, E(final state) is the energy of the system in its final state, and E(initial state) is the energy of the system in its initial state.


What is the enthalpy equation used to calculate the change in heat energy of a system at constant pressure?

The enthalpy equation used to calculate the change in heat energy of a system at constant pressure is H q PV, where H is the change in enthalpy, q is the heat added or removed from the system, P is the pressure, and V is the change in volume.


How can one calculate the enthalpy change using bond energies?

To calculate the enthalpy change using bond energies, you need to subtract the total energy needed to break the bonds in the reactants from the total energy released when the new bonds form in the products. This calculation gives you the overall enthalpy change for the reaction.


How do you calculate displacement of an object using the work-energy equation?

To calculate displacement using the work-energy equation, first calculate the work done on the object using the force applied and the distance moved. Then, equate the work done to the change in kinetic energy of the object using the work-energy equation: Work = Change in kinetic energy = 0.5 * mass * (final velocity^2 - initial velocity^2). Finally, rearrange the equation to solve for displacement.