answersLogoWhite

0

you have to do:

work (output) divided by work (input)

= F x d (output) divided by F x d (input)

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What is the mechanical efficiency of a pulley?

i dont know the correct answer


What is the relationship between the pulley torque and the efficiency of a mechanical system?

The relationship between pulley torque and the efficiency of a mechanical system is that higher pulley torque can lead to lower efficiency. This is because higher torque can result in more friction and energy loss in the system, reducing its overall efficiency.


Why can't a pulley have a mechanical advantage greater than 1?

The mechanical advantage of a pulley can be greater than 1.The efficiency cannot but that is a different matter.


What is the pulley equation used for in mechanical systems?

The pulley equation is used in mechanical systems to calculate the relationship between the forces applied to a pulley system and the resulting motion or load. It helps determine the mechanical advantage and efficiency of the system.


What are variables for a pulley?

Some variables for a pulley system include the radius of the pulley, the force applied to the pulley, the tension in the rope or belt, and the acceleration of the system. Each of these variables can affect how the pulley system functions and can be used to calculate mechanical advantage or efficiency.


What is the formula to find mechanical efficiency?

Mechanical efficiency = (output energy)/(input energy) . It's typically stated as a percentage.


A person does 50j of work to lift a crate using a pulley. the pulley's work output is 42j. What is the pully's mechanical efficiency?

The mechanical efficiency of the pulley is calculated as: (Work output / Work input) * 100%. In this case, it would be (42J / 50J) * 100% = 84%. The pulley is 84% efficient at converting input work into output work.


What is the effect of kinetic friction on a block and pulley system when determining the overall efficiency of the system?

Kinetic friction in a block and pulley system reduces the efficiency by converting some of the mechanical energy into heat. This results in a decrease in the overall efficiency of the system as some of the input energy is lost due to friction.


What would happen to a pulley system if the load were increased?

Ideal mechanical advantage is the mechanical advantage when there is no friction. It is the mechanical advantage when the efficiency of the pullefy system is 100%. It is a constant for that system of pulleys. Therfore it is not affected by increasing or decreasing the load. But actual mechanical advantage will be less than this ideal mechanical advantage due to friction. In other words the efficiency will be less than 100 %. If the efficiency is 80%, it implies 20% is wasted due to friction while lifting a load. If we increase the load the friction also increases and hence the efficiency will decrease with the load.


What are the different types of forces acting on a pulley system and how do they affect the overall mechanical advantage of the system?

In a pulley system, the main types of forces are tension and friction. Tension is the force exerted by the rope or cable on the pulley, while friction is the resistance to motion between the pulley and the rope. These forces can affect the overall mechanical advantage of the system by either increasing or decreasing the efficiency of the pulley system. More tension can increase the mechanical advantage, making it easier to lift heavy loads, while friction can reduce the efficiency of the system, requiring more force to lift the same load.


How does increasing the number of pulleys affect the ideal mechanical advantage and efficiency of pulley system?

Ideal mechanical advantage is the mechanical advantage when the efficiency of the pullefy system is 100%. It is a constant for that system of pulleys. Therfore it is not affected by increasing or decreasing the load.The MA of a pulley is equal to the number of supporting ropes.If the load is supported by one rope , the M.A of the system is 1. Efficiency is 1 for ideal pulley ( No loss of energy due to friction)If the load is supported by two ropes , the M.A of the system is 2. But Efficiency is still 1 for ideal pulley ( No loss of energy due to friction)If the load is supported by three ropes , the M.A of the system is 3. Efficiency is still 1 for ideal pulley ( No loss of energy due to friction) .And so on.Read more: How_does_increasing_the_load_affect_the_ideal_mechanical_advantages_and_efficiency_of_a_pulley_system


What are some common pulley problems in physics and how can they be solved?

Common pulley problems in physics include issues with friction, tension, and the mechanical advantage of the pulley system. These problems can be solved by analyzing the forces acting on the pulley, using equations of motion to calculate the acceleration and tension in the system, and applying principles of mechanical advantage to determine the efficiency of the pulley setup. Additionally, reducing friction by using lubricants or smoother surfaces can help improve the performance of the pulley system.