###### Asked in CalculatorsFactoring and Multiples

Calculators

Factoring and Multiples

# How do you find the nth root of a number?

## Answer

###### Wiki User

###### May 29, 2014 2:06PM

You seem to be unaware of the fact that you can obtain the answer easily by using the scientific calculator that comes as part of your computer. In general the nth root is extremely difficult to find.

## Related Questions

###### Asked in Math and Arithmetic, Algebra, Geometry

### What are forms of radical?

The radical symbol, otherwise known as the "square root sign",
lets you take the nth root of any number.
Any number can be placed above, and slightly to the left, of the
square root sign, to indicate the nth root. For example, the cube
root of 27 is 3.
The number inside the square root sign (that which you are finding
the square root of), is called the radicand.

###### Asked in Math and Arithmetic, Algebra

### What is the nth root of 244?

The nth root of a number is that number which when raised to the
nth power (ie when multiplied by itself n times) results in the
number.
When n=2, it is the square root of the number;
when n=3 it is the cube root of the number.
To find the nth root of a number, an electronic calculator can
be used, using the nth root button [x√y] (though more recent
calculators replace the x and y by boxes) viz:
<n> [x√y] [2] [4] [4] [=]
or with the more recent calculators:
[#√#] <n> [Navigate →] [2] [4] [4] [=]
where <n> is the nth root, eg for 2nd root (square roots)
enter [2];
and the # is being used to represent a box on the keys of the
more recent calculator.
Considering the rules for indices, the nth root is the the
number to the power of 1/n, ie 244^(1/n), thus the calculation can
be done using the power button:
[2] [4] [4] [^] [(] [1] [÷] <n> [)] [=]
With the more recent calculators, the power button is pressed
first, the 244 entered, the navigate-right key pressed (to get in
to the power part of the input) and then the n entered.

###### Asked in Numbers

### What is the nth root of a real number What is a fractional root and a negative root of a real number?

The nth root of a number is a number such that if you multiply
it by itself (n-1) times you get the number. Or if you multiply 1
by it n times. Many definitions get this wrong due to sloppy use of
the language.So if y^n = x then the nth root of x is y.
x^(a/b) is the bth root of x^a or, equivalently, it is (bth root
of x)^a. If mental calculation is required then the second form is
easier to use because it means you are dealing with smaller number.
For example, 16^(3/4) can be calculated as (4th root of 16)^3 = 2^3
= 8. Not too difficult. But the alternative method would be to
calculate the 4th root of 16^3 = the fourth root of 4096. Not
something most people would wish to tackle.
A negative root is simply the reciprocal. Thus x^(-a) is simply
1/(x^a).

###### Asked in Math and Arithmetic

### What is the nth term of 1 2 4 8?

Each number in this sequence is twice the previous number. The
nth. term is 2n-1.
Each number in this sequence is twice the previous number. The nth.
term is 2n-1.
Each number in this sequence is twice the previous number. The nth.
term is 2n-1.
Each number in this sequence is twice the previous number. The nth.
term is 2n-1.

###### Asked in Math and Arithmetic, WikiAnswers Local

### What is the nth term for 2.8 3.6 4.4 5.2?

Given any number you want for the nth term (n>4), it is
possible to find a polynomial of order 4 that will fit these points
and the additional one. Consequently, any number can be the nth
number - the rule for that is easy to find.
Still, the simplest solution here is a polynomial of degree 1:
Un = 0.8n + 2

###### Asked in Algebra

### How do you find the nth term?

Say if you had the pattern 15 20 25 30 35 40 45 50
To find the nth term you have to see what the gap between the
numbers is. In our case this is 5. Then you have to find out what
the difference between the gap and the first number. In this
sequence it is 10. So your answer would be.....
5n+10
That's how you find the nth term.