As of March 2015, nobody has managed to make those so far, so you can't really expect us to give you the recipe here.
We currently don't know of any room temperature superconductors; we've managed to find some "high temperature" superconductors, but "high" in this case means "liquid nitrogen temperatures" ... about two hundred degrees Celsius below zero. The lowest naturally occurring temperature ever recorded on Earth is about 184K ... about fifty degrees Celsius above the point at which the highest-known-temperature superconductor becomes superconducting.
We currently don't know of any room temperature superconductors; we've managed to find some "high temperature" superconductors, but "high" in this case means "liquid nitrogen temperatures" ... about two hundred degrees Celsius below zero. The lowest naturally occurring temperature ever recorded on Earth is about 184K ... about fifty degrees Celsius above the point at which the highest-known-temperature superconductor becomes superconducting.
Because refrigerating superconductors to the cryogenic temperatures needed by current ones is expensive, severely limiting the applications they are used in.Metallic superconductors need cooling to the temperature of liquid helium.Copper oxide ceramic superconductors need cooling to the temperature of liquid nitrogen.Room temperature superconductors, if they exist, would need little or no cooling.
because thats there job and thats what they do
Resistance decreases with the decrease of temperature. Superconductors are made by lowering the temperature.
Superconductors are materials that can conduct electricity with zero resistance when cooled below a certain critical temperature. They also exhibit the Meissner effect, which expels magnetic fields from their interior. Superconductors have a critical magnetic field above which they cease to superconduct.
As of now, room temperature superconductors are not yet a reality. Scientists are actively researching and working towards developing materials that can exhibit superconductivity at higher temperatures, but it remains a challenging goal to achieve.
If you mean superconductors, no not yet. The best so far are the copper oxide ceramic superconductors that work at liquid nitrogen temperatures.I know of nothing called a "magnetic semiconductor".
In a way, all currently existing superconductors are "low-temperature", but some more so than others. The traditional superconductors work up to about 20 K (or minus 253 Centigrade); more recent "high-temperature superconductors" work up to 100 K or so. 100 K is still minus 173 Centigrade, but it is much "hotter" than the traditional superconductors. The new "high-temperature" superconductors apparently work different than the old-fashioned ones; at least, the theory that explains the traditional superconductors fails to explain how the new superconductors work.
As of now, the concept of a room temperature superconductor is not a reality. Superconductors typically require very low temperatures to function, but researchers are actively working to develop materials that exhibit superconductivity at higher temperatures.
Most of the metals can be superconductors if you freeze them enough. They reach superconductivity bellow a temperature called the critical temperature (Tc). So the answer is: Freeze them below Tc. The higher the critical temperature, the better.
By increasing the temperature to 0 C