answersLogoWhite

0


Best Answer

You measure the capacitance of a capacitor in an active circuit by observing the voltage across it and the current through it. That gives you, by Ohm's law, the impedance of the capacitor. Plug that in the the equation for capacitive reactance, and you get capacitance.

Note: There is no such thing as a three phase capacitor. A capacitor is a two terminal device that resists a change in voltage inversely proportional to its capacitance. You connect one capacitor to one phase. If you have a "three phase capacitor", then you are talking about three capacitors. Deal with each one separately.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you measure the capacitance of 3 phase capacitor in active line voltage of 3 phase circuit?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Capacitance is the property of an electrical circuit that?

A capacitor resists a change in voltage, proportional to current, and inversely proportional to capacitance. The equation of a capacitor is dv/dt = i/c.


What is a capacitor analyzer designed to read?

Capacitor voltage


Why is it capacitance does not affect current in a Direct Current circuit?

Capacitors resist a change in voltage, proportional to current and inversely proportional to capacitance. In a DC circuit, the voltage is not changing. Therefore, after equilibrium is reached, there is no current flowing through the capacitor.


Can a microfarad conevrt into volts?

No! This is a term for capacitance. A capacitor will store a voltage up to it's breakdown limit plus cause a voltage reaction to a following circuit.


What do you measure capacitors in?

Capacitors are characterized by two values: their voltage, exceeding which will damage the capacitor (sometimes leading to a violent explosion), and their capacitance, as the name suggests. The voltage is expressed in volts. The capacitance is expressed in Farads. One (1) Farad is an amount of charge that makes the voltage across the capacitor terminals to rise by 1 Volt. If a 10mA current flows into the capacitor and it causes the capacitor's voltage to rise by 1V every second, the capacitor's capacitance is 10 milifarads. 1 Farad is a lot of charge, so for most applications, submultiples (microfarads and milifarads, mostly) are commonly used. A curious note: the more voltage a capacitor can handle, the (usually) bigger the size of it. At low voltages and low capacitance, the capacitance doesn't influence the size that much, though.

Related questions

How do you measure capacitor's value?

The equation of a capacitor is dv/dt = i/c. The capacitor resists a change in voltage, inversely proportional to its capacitance. One way to measure capacitance is to plot voltage and current through a resistor following a voltage step change. The slope at any point will give you the answer. Another way is to measure the resonant frequency in circuit with an inductor. Another way is with a Maxwell bridge. See "How do you draw the vector diagram of maxwell's capacitance bridge?"


What is the difference between capacitor and capacitance?

A capacitor is a device that stores an electrical charge, or if you prefer- resists any change in voltage applied to it. Capacitance is a measure of the size or ability of a capacitor to do that. This is the Farad


Capacitance is the property of an electrical circuit that?

A capacitor resists a change in voltage, proportional to current, and inversely proportional to capacitance. The equation of a capacitor is dv/dt = i/c.


What is a capacitor analyzer designed to read?

Capacitor voltage


Why is it capacitance does not affect current in a Direct Current circuit?

Capacitors resist a change in voltage, proportional to current and inversely proportional to capacitance. In a DC circuit, the voltage is not changing. Therefore, after equilibrium is reached, there is no current flowing through the capacitor.


Can a microfarad conevrt into volts?

No! This is a term for capacitance. A capacitor will store a voltage up to it's breakdown limit plus cause a voltage reaction to a following circuit.


Can you use a 35uf oval capacitor in place of a 45uf round?

The shape of a capacitor has no meaning to the circuit. What matters is the capacitance, the voltage rating, and the current rating. 35uf is not the same as 45uf.


What do you measure capacitors in?

Capacitors are characterized by two values: their voltage, exceeding which will damage the capacitor (sometimes leading to a violent explosion), and their capacitance, as the name suggests. The voltage is expressed in volts. The capacitance is expressed in Farads. One (1) Farad is an amount of charge that makes the voltage across the capacitor terminals to rise by 1 Volt. If a 10mA current flows into the capacitor and it causes the capacitor's voltage to rise by 1V every second, the capacitor's capacitance is 10 milifarads. 1 Farad is a lot of charge, so for most applications, submultiples (microfarads and milifarads, mostly) are commonly used. A curious note: the more voltage a capacitor can handle, the (usually) bigger the size of it. At low voltages and low capacitance, the capacitance doesn't influence the size that much, though.


Can you go from a 1000uf to a 1200uf capacitor with the same voltage?

Capacitance and voltage may be varied independently of one another, but the outcome depends exactly what the circuit is and what role this capacitor plays. If it's a timing capacitor, the time constant will increase. Certainly the impedance will change in a circuit where it's required to decouple a rail with ripple present; as a filter or as a coupling capacitor.


What two facctors determine the capacitive reactance of a capacitor?

The reactance of a capacitor is a function of -- the capacitance of the capacitor -- the frequency of the voltage across the capacitor


What happens to the current in a circuit as a capacitor charges?

What happens to the current in a circuit as a capacitor charges depends on the circuit. As a capacitor charges, the voltage drop across it increases. In a typical circuit with a constant voltage source and a resistor charging the capacitor, then the current in the circuit will decrease logarithmically over time as the capacitor charges, with the end result that the current is zero, and the voltage across the capacitor is the same as the voltage source.


Why capacitor behave as open circuit against alternating current?

Capacitors store electrical charge. Imagine we have a capacitor. At time 0 seconds we connect a DC voltage across the capacitor - immediately as the voltage is connected the capacitor is at 0 volts and the maximum current (relative to the circuit resistance) flows. At this extreme the capacitor can be treated as a short circuit, so for high frequency AC volts we should treat a capacitor as being a short circuit. As time passes the current in the circuit will go down and the voltage of the capacitor will go up - this is because as the capacitor gains more charge it gains more voltage, lowering the voltage across any resistance in the circuit consequently lowering the current in the circuit. When the capacitor is virtually full no current will flow at all and the voltage across the capacitor will equal the DC source voltage. At this extreme the capacitor can be treated as an open circuit, so for low frequency AC (allowing the capacitor to fill up before the current alternates) we can treat the capacitor as being an open circuit. Technically, it is not an open/closed circuit when it comes to AC because the capacitance will results in a signal lag or lead. However, if the frequency is low/high enough the lag/lead is often negligable.