If a magnetic compass needle is placed in a magnetic Field , its needle deflects and points in the north and south directions
If a magnetic compass needle is placed in a magnetic Field , its needle deflects and points in the north and south directions
If a magnetic compass needle is placed in a magnetic Field , its needle deflects and points in the north and south directions
A compass needle, as well as everything else on Earth, is ALWAYS within a magnetic field. If the compass needle is free to turn, it will align itself with the magnetic field, and point along the north/south axis of the field. If another magnetic field source appears near the compass ... such as a current-carrying electrical conductor, or a toy magnet in somebody's pocket ... whose field strength is comparable to the Earth's, then the compass will deflect, and realign itself along the north/south axis of the SUM of the fields.
When a small compass is placed in a magnetic field, the needle of the compass will align itself with the direction of the magnetic field. This is because the needle is magnetized and responds to the magnetic forces in the surrounding area.
The needle of a compass will deflect from its original position when a wire carrying an electric current is placed across it. This is due to the magnetic field created by the current in the wire, which interacts with the magnetic field of the compass needle, causing it to move.
A compass needle aligns itself with the magnetic field lines and points toward the magnetic north pole. The north-seeking end of the needle is attracted to the Earth's magnetic south pole, causing it to move and orient itself accordingly.
A compass needle, as well as everything else on Earth, is ALWAYS within a magnetic field. If the compass needle is free to turn, it will align itself with the magnetic field, and point along the north/south axis of the field. If another magnetic field source appears near the compass ... such as a current-carrying electrical conductor, or a toy magnet in somebody's pocket ... whose field strength is comparable to the Earth's, then the compass will deflect, and realign itself along the north/south axis of the SUM of the fields.
A compass needle placed near a current-carrying wire shows deflection because the moving charges in the wire create a magnetic field around the wire. This magnetic field interacts with the magnetic field of the compass needle, causing it to align with the direction of the current flow in the wire.
Because the primary purpose of a compass is to react to the magnetic field of the earth, it get affect by a nearby compass when the compass' magnetic field is stronger than that of the earth. As the magnet is moved away, the strength of its field diminishes and the compass goes back to 'normal' - pointing north.
A compass needle is lightly magnetized, and will align itself with the lines of magnetic force at your locale. *It will not necessarily point to the Poles. The South magnetic pole is currently at about 68 deg S - some long way from 90 deg.
The magnetic field generated by the piece of metal interferes with the Earth's magnetic field, causing the compass needle to deviate from pointing north. This happens because the compass needle aligns itself with the combined magnetic field in its vicinity.
A current-carrying wire generates a magnetic field around it due to the flow of electric charges. When the wire is placed near a magnetic compass, the magnetic field produced by the wire interacts with the magnetic field of the compass needle, causing the needle to deflect and align with the direction of the wire's magnetic field.