When a star is at the end of its lifetime its mass increases.
When a star is at the end of its lifetime its mass increases.
High mass stars have a faster rate of burning compared to low mass stars. This is because high mass stars have more gravitational pressure in their cores, leading to faster nuclear reactions and higher energy output. This results in a shorter lifespan for high mass stars compared to low mass stars.
An isolated and distinct mass of stars is a galaxy.
its not about stars its about mass and he proposed that mass can be converted into energy
They produce light.
Most stars fall within a mass range of approximately 0.1 to 100 times the mass of our Sun. This range includes most of the stars in the universe, from low-mass stars like red dwarfs to high-mass stars like blue giants.
In a newly formed star cluster stars with low masses must greaty out number stars with high masses. High mass stars are rare and low mass stars are extremely common.
High mass adult stars are classified as supergiants or giants, while low mass adult stars are classified as main sequence stars. This classification is based on the mass of the star and where it falls on the Hertzsprung-Russell diagram.
There are more low mass stars. this is for two reasons:- # the star forming process generates more low mass stars # High mass stars burn out very quickly and explode as supernovas and thus over time there are less and less of them.
There are three types of stellar remnants. Low to medium mass stars will become white dwarfs. High mass stars will become neutron stars. Very high mass stars will become black holes.
A huge mass of stars and planets is called a galaxy.
No, low mass stars do not become neutron stars. Low mass stars like the Sun end their lives as white dwarfs. Medium mass stars can evolve into neutron stars, but they must first go through the supernova stage to shed their outer layers and leave behind a dense core of neutrons.