by increasing surface area
by increasing surface area
An open parachute increases air resistance by capturing and deflecting air molecules. This creates drag force that opposes the skydiver's downward motion, slowing their descent. The increased air resistance allows the skydiver to fall at a more manageable and safer speed.
An open parachute increases air resistance by creating a large surface area that catches and slows down the air around it. This creates drag that counteracts the force of gravity, slowing the skydiver's descent. The inflated canopy also increases the overall mass of the skydiver-parachute system, further enhancing the air resistance.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
A parachute increases air resistance, which is proportional to the surface area of the parachute. This increased air resistance slows down the person's fall, reducing their terminal velocity. By the time the person reaches terminal velocity with the parachute open, the gravitational force pulling them down is balanced by the air resistance force pushing up, allowing for a controlled descent.
the parachute has a big space area so that when he falls through the air the air molecules get collected by the parachute therefore reducing speed of falling down PS. doesnt mean he doesnt fall at all
An open parachute increases air resistance for a falling skydiver by capturing air in its canopy, creating drag that counteracts gravity and slows the descent. The increased surface area of the parachute also results in more air molecules colliding with it, further enhancing the resistance. This process allows the skydiver to decelerate safely and control their descent back to the ground.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
Well if your falling u have to press the a button to open your parachute
slowing down the speed at which the skydiver falls. The parachute increases the air resistance by creating drag, which counteracts the force of gravity pulling the skydiver down. This allows for a slower descent and a softer landing.
"Free fall" means that an object falls only under the influence of gravity; specifically, air resistance can be ignored. An open parachute does not normally fall in this category."Free fall" means that an object falls only under the influence of gravity; specifically, air resistance can be ignored. An open parachute does not normally fall in this category."Free fall" means that an object falls only under the influence of gravity; specifically, air resistance can be ignored. An open parachute does not normally fall in this category."Free fall" means that an object falls only under the influence of gravity; specifically, air resistance can be ignored. An open parachute does not normally fall in this category.
To start with there is gravitational attraction. As soon as the skydiver starts falling, (s)he will experience the drag force due to air resistance. The gravitational force is essentially constant but the drag increases as the diver's velocity increases until it equals gravity. The diver is the falling at terminal velocity and will continue to do so until the parachute is operated.