The force of gravity will accelerate the falling objects towards itself.
gravity and mass
Gravity is a force that pulls objects towards the Earth. When an object is dropped, gravity acts on it, causing it to accelerate towards the ground. The speed of the object as it falls increases due to this acceleration until it reaches the ground.
No, changing the mass of a free-falling body does not affect the value of the acceleration due to gravity. The acceleration due to gravity is a constant value that is independent of the mass of the object. All objects fall at the same rate in a vacuum due to gravity.
Air pressure does not directly affect gravity. Gravity is a fundamental force that acts uniformly on all objects regardless of air pressure. However, changes in air pressure can influence the density of the air, which may indirectly affect the behavior of objects falling through the atmosphere due to air resistance.
The greater the mass, the stronger the gravity, but the distance does not affect the amount of gravity.
Air does not affect gravity directly, as gravity is a force of attraction between objects with mass. However, air resistance can have an impact on the motion of objects falling through the air, as it opposes the force of gravity and can slow down the object's descent.
yes
Anything with mass
Gravity affects all objects in the universe. It is a fundamental force that pulls objects with mass toward each other. The strength of gravity depends on the mass of the objects and the distance between them.
No, temperature does not affect the force of gravity. Gravity is a fundamental force of nature that is determined by the mass and distance between objects, not by temperature. Temperature may affect the properties of objects or materials, but it does not influence the strength of gravity.
False. Free falling objects accelerate at a rate of 9.8 m/s^2 due to the force of gravity acting on them. The force of friction and air resistance do not significantly affect the acceleration of free falling objects in a vacuum.
yes