it doesnt realy
The difference is that the mass density not effect by gravity but weight density effect by gravity. for example if mass density cotn in earth equal to 20 kg/m3 and weight density equal to 196.2 N/m3 this cotn will change the weight density in the moon but mass density not change because gravity moon diffrent to gravity earth mass density =mass/volume (no gravity) weight density= (mass * gravity)/volume (gravity)
Almost, but not quite. 'Specific gravity' is the density of a substancecompared to water.Numerically . . .Specific gravity of a substance = Density of the substance/Density of water.
To convert API gravity to density in g/cm^3, you can use the formula: Density = 141.5 / (API gravity + 131.5). This formula is derived from the relationship between API gravity and density in the petroleum industry.
The number that compares an object's density to the density of water is called specific gravity. It is a unitless quantity representing the ratio of the density of a substance to the density of water.
Specific gravity is the ratio of the density of a substance to the density of a reference substance. Density is a measure of how mass is distributed in a given volume, while specific gravity compares the density of a substance to that of water. In other words, specific gravity is a dimensionless quantity that provides a relative measure of how dense a substance is compared to water.
No, The weight is depends on gravity and total mass .
The difference is that the mass density not effect by gravity but weight density effect by gravity. for example if mass density cotn in earth equal to 20 kg/m3 and weight density equal to 196.2 N/m3 this cotn will change the weight density in the moon but mass density not change because gravity moon diffrent to gravity earth mass density =mass/volume (no gravity) weight density= (mass * gravity)/volume (gravity)
There is no effect on the specific gravity if some of the sample is removed. The amount of mass will change, but it will still have the same specific gravity. It is basically a density. The specific gravity of 1lb of cement is the same as the specific gravity of 100lbs of cement, you just have more cement.
Almost, but not quite. 'Specific gravity' is the density of a substancecompared to water.Numerically . . .Specific gravity of a substance = Density of the substance/Density of water.
"Relative gravity" is used more or less as a synonym for density; it bears no direct relation with "gravity" as such. So, you would have to specify, "specific gravity [or density] of what substance"."Relative gravity" is used more or less as a synonym for density; it bears no direct relation with "gravity" as such. So, you would have to specify, "specific gravity [or density] of what substance"."Relative gravity" is used more or less as a synonym for density; it bears no direct relation with "gravity" as such. So, you would have to specify, "specific gravity [or density] of what substance"."Relative gravity" is used more or less as a synonym for density; it bears no direct relation with "gravity" as such. So, you would have to specify, "specific gravity [or density] of what substance".
Gravity does not depend on density. Gravity is the gravitational pull that is invisible and cannot be touched or changed. Density is how much matter is packed within an object, which can be changed. Gravity and density are two totally different things, and are in no way related, therefore gravity does not depend on density.
Gravity, because of the structures of gravity, gravity has no measure whereas density has units of mass..
To convert API gravity to density in g/cm^3, you can use the formula: Density = 141.5 / (API gravity + 131.5). This formula is derived from the relationship between API gravity and density in the petroleum industry.
The number that compares an object's density to the density of water is called specific gravity. It is a unitless quantity representing the ratio of the density of a substance to the density of water.
density is like weight and gravity is what pulls you to the ground density is what determines weight
Density is not affected by gravity. Density is affected by mass and volume, such that density = mass/volume. Weight, but not mass, is affected by gravity. Weight and mass are not the same thing.
Weight = (density) times (volume)The definition of density is mass/volume .Now [ weight = mass x gravity ], so [ mass = weight/gravity ], and [ density = weight/gravity x volume ] .So Weight = (density) x (volume) x (gravity)