Lowers the frequency, as it now takes longer for the wave to complete one cycle.
Increasing the wave speed will not affect the frequency of the wave. The frequency of a wave is determined by the source of the wave and will remain constant regardless of the wave speed.
Assuming a constant wavelength, then increasing the wave speed will increase the frequency.
Increasing the wavelength by 50 percent will decrease the frequency of the wave by one-third. This is because frequency and wavelength are inversely proportional - as wavelength increases, frequency decreases, and vice versa.
velocity of a wave equals wave frequency times wave length.
The student can decrease the wavelength of the wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave - increasing frequency decreases wavelength and vice versa. Therefore, to decrease the wavelength, the student should focus on increasing the frequency of the wave.
Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases
Increasing the wavelength of an electromagnetic wave will decrease its frequency and energy. This change can affect how the wave interacts with matter, such as increased penetration through obstacles or reduced absorption by certain materials.
i need help with this question?
The increase in amplitude does not affect the wave's frequency, which is determined by the wave source. However, the energy transported by the wave is proportional to the square of the amplitude, so increasing the amplitude from 3m to 6m quadruples the energy transported by the wave.
The frequency of a wave is not directly related to the wave length. A low frequency wave or a high frequency wave may be either long-wave or short-wave.
wave length and frequency are the product of the wave speed, so the wave speed is a constant variable and the other two are inversely proportional the wave length increases, as the frequency decreases
Increasing energy of a wave will increase its frequency and decrease its wavelength. This is because energy is directly proportional to frequency (E = hf) and inversely proportional to wavelength (E = hc/λ), where h is Planck's constant and c is the speed of light.