Generally increasing the temperature and concentration the reaction rate is higher.
As the temperature increases the molecules gets more kinetic energy so increases the reaction rate.
The three factors that affect the rate of a biochemical reaction are temperature, substrate concentration, and enzyme concentration. Temperature influences the kinetic energy of molecules involved in the reaction, substrate concentration determines the amount of reactants available for the reaction, and enzyme concentration affects the number of catalysts available to facilitate the reaction.
temperature, pressure (in the case of gases), concentration
The three main factors that affect reaction rates are the concentration of reactants, temperature, and the presence of a catalyst. Increasing the concentration of reactants or temperature generally speeds up reactions, while catalysts can increase reaction rates by providing an alternate reaction pathway with lower activation energy.
3 factors that affect the speed of an enzyme catalysed reaction are: .Temperature .Enzyme Concentartion .Substrate concentration
Examples: concentration of reactants, temperature, pressure, stirring etc.
Concentration, surface area, and temperature all affect the rate of chemical reactions. Increasing concentration increases the number of reactant particles colliding, larger surface area allows for more contact between reactants, and higher temperature provides more energy for particles to react.
Conditions such as temperature, pH, substrate concentration, and enzyme concentration can affect the function of enzymes. High temperatures can denature enzymes, extremes in pH can alter their structure, low substrate concentration can slow down reaction rates, and low enzyme concentration can limit the rate of reaction.
The temperature of the system
Increasing the concentration of the reactants increases the rate of the reaction.
The ability of an enzyme to catalyze a reaction is not affected by changes in temperature or pH within a certain range known as the enzyme's optimal conditions. However, extreme changes in temperature, pH, or enzyme concentration can denature the enzyme and affect its activity. Additionally, the substrate concentration can affect the rate of reaction up to a point of saturation, where all enzyme active sites are occupied.
1. The concentration of the substances. 2. The temperature. 3. The surface area of the particles. 4.The presence of a catalyst.