answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How does the effective length of a magnet affect its magnetic strength?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Does the thickness or length of the nail affect the electro magnets strength?

yes


Why magnetic lentgh is less than geometric length of magnet?

magnetic length refers to the length of magnet which is able to produce magnetic lines from it. since whole length is not able for that magnetic length is small than geometric one


How does distance affect magnetism?

Magnetic field strength (H) is defined as the magnetomotive force per unit length, and is expressed in amperes per metre (often spoken as 'ampere turns per metre') in SI. An older, and far more descriptive term, is 'magnetomotive force gradient'.The 'closeness' or intensity of a magnetic field's flux lines, on the other hand is termed magnetic flux density(B), expressed in teslas in SI.There is a complex relationship between magnetic field strength and flux density, because of a property exhibited by ferromagnetic materials, called 'hysteresis'. In general, as the magnetic field strength applied to a sample of unmagnetised ferromagnetic material increases, the resulting flux density also increases (but not linearly) until saturation is reached, at which point any further increase in magnetic field strength will have no effect whatsoever on the flux density. If the magnetic field strength is then reduced, the flux density will also reduce (again, not linearly), but when the magnetic field strength reaches zero amperes, a certain amount of flux density remains.So to answer your question, you really need to study what's known as the B-H or magnetising curve for a sample of ferromagnetic material -this will show you exactly what the relationship between magnetic field strength and flux density for any give ferromagnetic material.


How do you calculate the magnetic field strength in an injector cyclotron?

- Magnetic field strength is the intensity of a magnetic field at a given location. Historically, a distinction is made between magnetic field strength H, measured in ampere/meter, and magnetic flux density B, measured in tesla. Magnetic field strength is defined as the mechanical force (newton) on a wire of unit length (m) with unit electric current(A). The unit of the magnetic field, therefore, is newton/ (ampere x meter), which is called tesla. The magnetic field may be visualized by magnetic field lines. The field strength then corresponds to the density of the field lines. The total number of magnetic field lines penetrating an area is called magnetic flux. The unit of the magnetic flux is tesla x m2 = weber. The older units for the magnetic flux, maxwell = 10-8 weber, and for the magnetic flux density, gauss = maxwell / cm2 = 10-4 tesla, are not to be used any more. Magnetic flux density diminishes with increasing distance from a straight current-carrying wire or a straight line connecting a pair of magnetic poles around which the magnetic field is stable. At a given location in the vicinity of a current-carrying wire, the magnetic flux density is directly proportional to the current in amperes. If a ferromagnetic object such as a piece of iron is brought into a magnetic field, the "magnetic force" exerted on that object is directly proportional to the gradient of the magnetic field strength where the object is located. ------------------------------------------------------------------- B=μH Magnetic field in Solenoid B=μnI where n is turns/m So H=nI --------------------------------------------


What is the significance of B-H curve?

H is the symbol for magnetic field strength, which is defined as the magnetomotive force per unit length of a magnetic circuit, where the magnetomotive force is provided by a current-carrying coil, wound around that magnetic circuit. Magnetomotive force is the product of the current flowing through the coil and the number of turns, expressed in amperes (although often spoken as "ampere turns").The magnetomotive force gives rise to the magnetic flux within the magnetic circuit, the intensity of which is termed flux density (symbol B), expressed in teslas.A B-H curve plots changes in a magnetic circuit's flux density as the magnetic field strength is gradually increased. The resulting shape indicates how the flux density increases due to the gradual alignment of the magnetic domains (atoms, that behave like tiny magnets) within the magnetic circuit material. When all the domains have aligned, the B-H curve reaches a plateau and the magnetic circuit is said to be saturated. At this point, any further increase in magnetic field strength has no further effect on the flux density. Different magnetic materials, such as iron, steel, etc., have B-H curves with different slopes and points at which saturation occurs.After reaching saturation, a reduction in the magnetic field strength results in a reduction in the flux density. However, the resulting curve does not quite match the original curve, but 'lags behind' it. This effect is called hysteresis, which is from the Greek, meaning to 'lag behind'.When the magnetic field strength reaches zero, the resulting curve indicates that the flux density has not, itself, reached zero. The value of flux density remaining is termed the remanence (or residual magnetism) of the magnetic material. 'Soft' magnetic materials, used in the manufacture of transformer cores, etc., will have a very small remanence; whereas 'hard' magnetic materials, used in the manufacture of permanent magnets, will have a very high remanence.In order to remove any remanence, the magnetic field strength requires to be reversed (by reversing the direction of the current in the coil) and increased in the opposite direction. The amount of 'negative' magnetic field strength necessary to completely remove the remanence is called coercivity.If we continue to increase the negative magnetic field strength, the magnetic material will again reach saturation in the opposite direction, and the new curve will be a mirror image of the original curve. The complete B-H curve is then usually described as a hysteresis loop. The area contained within a hysteresis loop indicates the energy required to perform the 'magnetise - demagnetise' process.'Soft' magnetic materials require relatively little energy to become magnetised and demagnetised and, so, have 'narrow' hysteresis loops, whereas 'hard' magnetic materials require a great deal of energy and have 'wide' hysteresis loops.So, B-H Curves and Hysteresis Loops are a valuable tools for comparing the characteristics and behaviour of different magnetic materials, in order to select them for an appropriate application.

Related questions

The length of a part being magnetized by passing an electric current from one end to the other affect 1 permeability 2 strength of magnetic field 3 not affect magnetic field?

Permeability


Define effective length of a column.?

The equations for critical buckling load include the variable KL which is the effective length. K is the effective length factor. Values for K vary depending on the load and type of supports of a member.NOTE:The larger the effective length, the less strength there is in a column. So, if there is a choice of effective lengths, the larger value will give the more conservative strength value.


Which factors affect the magnetic strength of a solenoid which is carrying an electric current?

Factors affecting the magnetic field strength of a solenoid are: - length of the solenoid - diameter of the solenoid - current through the coil around the solenoid - number of turns of the coil of current around the solenoid, usually turns of wire - material in the core


How would you Explain magnetic pole strength?

Magnet has two poles. The Pole strength depends on flux that emanate from it. The pole strength is measured in Amp-m. If we know magnetic moment the pole strength can be calculated as magneticmoment/length of magnet


Does the length of a wire affect the strength of an electromagnet?

longer= stronger


What are the factors affecting the electromagnetic induction?

Identify factors which affect the power of electromagnet?


Does the length of sticky tape affect its strength?

yes, the smaller the length the stronger it will make the tape.


What is the magnetic length of a magnet?

The effective length of a magnet is the distance between the magnetic poles. It is always less than the geometric length of the magnet,though the actual relation between the two depends on the shape of the magnet.


Does the thickness or length of the nail affect the electro magnets strength?

yes


Does the length of time in the pot affect the strength of coffee?

Yes, it makes it sexier!


Does the length of the leg of a triangle affect its strength?

A triangle is a rigid structure and the length of any of its sides makes no difference to its geometric rigidity. However, the longer the leg of any shape is, the more likely it is to buckle under strain. In that respect, the length of the leg will affect its strength.


What is the formula for calculating magnetic field?

'Magnetic field strength' (symbol: H) is defined as 'the magnetomotive force, per unit length, of a magnetic circuit'. In SI, it is expressed in amperes per metre (A/m), which is often spoken as "'ampere turns' per metre".It's equation is: H = (IN) / lwhere:H = magnetic field strength (ampere per metre)I = current flowing through coil (amperes)N = number of turns in coill = length of magnetic circuit