answersLogoWhite

0

Noncompetitive inhibitors decrease the rate of an enzyme reaction by bonding to an enzyme somewhere other than the active site, deforming it and permanently disabling the enzyme, so that enzyme can never function again, so the rate of reaction decreases.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Where does a noncompetitive inhibitor bind in relation to the enzyme's active site?

A noncompetitive inhibitor binds to a site on the enzyme that is not the active site.


Where does a noncompetitive inhibitor bind in relation to the enzyme-substrate complex?

A noncompetitive inhibitor binds to the enzyme at a location other than the active site, which is where the substrate normally binds. This binding changes the shape of the enzyme, making it less effective at catalyzing the reaction with the substrate.


What is the difference between a noncompetitive inhibitor and an allosteric inhibitor in enzyme regulation?

A noncompetitive inhibitor binds to an enzyme at a site other than the active site, while an allosteric inhibitor binds to a different site on the enzyme, causing a change in the enzyme's shape and reducing its activity.


Is lactose a noncompetitive inhibitor?

No, lactose is not a noncompetitive inhibitor. Lactose is a sugar found in milk that can act as an inducer for the lactose operon in bacteria, but it does not act as an inhibitor in enzyme kinetics.


How does a noncompetitive enzyme inhibitor function to inhibit enzyme activity?

A noncompetitive enzyme inhibitor works by binding to the enzyme at a site other than the active site, causing a change in the enzyme's shape. This change makes it harder for the substrate to bind to the enzyme, reducing its activity.


A noncompetitive inhibitor has a structure that?

A noncompetitive inhibitor has a structure that does not resemble the substrate structure. A compound that binds to the surface of an enzyme, and changes its shape so that a substrate cannot enter the active site is called a noncompetitive inhibitor.


Is copper sulfate a competitive or noncompetitive inhibitor?

Copper sulfate is a noncompetitive inhibitor. It binds to the enzyme at a site other than the active site, which results in a change in the enzyme's shape and prevents the substrate from binding effectively.


What is the difference between an allosteric inhibitor and a noncompetitive inhibitor in terms of their mechanisms of action on enzyme activity?

An allosteric inhibitor binds to a site on the enzyme that is different from the active site, causing a change in the enzyme's shape and reducing its activity. A noncompetitive inhibitor binds to either the enzyme or the enzyme-substrate complex, also reducing enzyme activity but without directly competing with the substrate for the active site.


How do competitive and noncompetitive inhibitions differ?

A competitive inhibitor often binds to an enzyme's active site. Noncompetitive inhibitors usually bind to a different site on the enzyme.


Which type of control agent exerts noncompetitive inhibition?

A noncompetitive inhibitor binds to an allosteric site on the enzyme, causing a conformational change that reduces the enzyme's activity without competing with the substrate for the active site. This type of control agent is called a noncompetitive inhibitor.


When the noncompetitive inhibitor is bonded to the enzyme?

When a noncompetitive inhibitor is bonded to the enzyme, it binds to a site other than the active site, altering the shape of the enzyme and reducing its activity. This type of inhibition is not easily overcome by increasing substrate concentration because it does not directly compete with the substrate for binding.


What would be the likely outcome if you increased the concentration of substrate for an enzyme in the presence of a noncompetitive inhibitor?

Increasing the concentration of substrate will not overcome the effect of a noncompetitive inhibitor. The inhibitor binds to the enzyme at a site other than the active site, causing a conformational change that reduces the enzyme's activity. Therefore, increasing the concentration of substrate will not result in a significant increase in enzyme activity.