3.3 moles of K2S
3.3 moles of S-2
6.6 moles of K+1
To find the number of grams in 3.3 moles of potassium sulfide (K2S), you need to calculate the molar mass of K2S, which is 110.26 g/mol. Then, you can multiply the molar mass by the number of moles to get the grams. In this case, 3.3 moles x 110.26 g/mol = 363.858 g.
If you have 2 moles of K+ for every mole of K2S and Molarity (M) is Moles per Liter. Then you know that you have .30 M of K2S. The way that you do that is setting up a series of conversion factors like so:(.15moles k2s/liter) x (2 moles of K/ 1 mole of K2S) = .30 moles k/ liter.The moles of K2S cancel out and you are left with moles of K per liter.
There are two cations in K2S. Potassium (K) has a +1 charge, so there are two potassium (K) cations in the compound K2S.
To determine how many moles of aluminum are produced from 33 grams, divide the given mass by the molar mass of aluminum, which is approximately 26.98 g/mol. So, 33 g / 26.98 g/mol ≈ 1.22 moles of aluminum are produced.
Formula for potassium sulfide is K2S.
If you have 2 moles of K+ for every mole of K2S and Molarity (M) is Moles per Liter. Then you know that you have .30 M of K2S. The way that you do that is setting up a series of conversion factors like so:(.15moles k2s/liter) x (2 moles of K/ 1 mole of K2S) = .30 moles k/ liter.The moles of K2S cancel out and you are left with moles of K per liter.
To find the number of grams in 3.3 moles of potassium sulfide (K2S), you need to calculate the molar mass of K2S, which is 110.26 g/mol. Then, you can multiply the molar mass by the number of moles to get the grams. In this case, 3.3 moles x 110.26 g/mol = 363.858 g.
If you have 2 moles of K+ for every mole of K2S and Molarity (M) is Moles per Liter. Then you know that you have .30 M of K2S. The way that you do that is setting up a series of conversion factors like so:(.15moles k2s/liter) x (2 moles of K/ 1 mole of K2S) = .30 moles k/ liter.The moles of K2S cancel out and you are left with moles of K per liter.
Potassium Sulfide - K2S2 Potassium1 SulfurPotassium = 39 grams per moleSulfur = 32 grams per moleAdd up the total mass - 2 K's and 1 S:2(39) + 1(32) = 110 grams/moleNow just make sure the units cancel so that you can multiply or divide out the mole unit3.3 mole K2S x 110 grams K2S/molemole unit cancels and you're left with 363 grams K2S
There are two cations in K2S. Potassium (K) has a +1 charge, so there are two potassium (K) cations in the compound K2S.
To calculate the mass of 3.3 moles of potassium sulfide, you would first determine the molar mass of K2S. The molar mass of potassium (K) is 39.1 g/mol and sulfur (S) is 32.1 g/mol. Therefore, the molar mass of K2S is 39.1*2 + 32.1 = 110.3 g/mol. Multiply this molar mass by 3.3 moles to find the mass.
To determine how many moles of aluminum are produced from 33 grams, divide the given mass by the molar mass of aluminum, which is approximately 26.98 g/mol. So, 33 g / 26.98 g/mol ≈ 1.22 moles of aluminum are produced.
how many moles are contained in 4.67 L sample of gas at 33 degrees celcius and 199 kpa
Formula for potassium sulfide is K2S.
To find the mass of 1.48 mol of potassium sulfide (K2S), you need to multiply the molar mass of K2S by the number of moles given. The molar mass of K2S is approximately 110.3 g/mol. Therefore, the mass of 1.48 mol of potassium sulfide would be 1.48 mol * 110.3 g/mol = 163.2 grams.
To calculate the mass of 7.111 mol of potassium sulfide (K2S), you need to multiply the number of moles (7.111 mol) by the molar mass of K2S (which is 110.26 g/mol). Therefore, the mass of 7.111 mol of potassium sulfide is 783.83 grams.
Potassium has many sulfide: K2S, K2S4, K2S2, K2S6, K2S3, K2S5. The most known is K2S.