moles HCl used = 3M X 15.5 mL / 1000 =>
moles = 0.0465
When reacting with a carbonate the molar ratios are
2:1 :: 1:1:1
So 0,0465 moles is equivalent to 2 molar ratios.
Hence 1 molar ratios is 0.0465 / 2 = 0.02325 moles produced.
NB However, you have NOT indicated the other reactnat. Since the product is carbon dioxide, then it is assumed that the other reactant is a carbonate.
Hence the balanced reaction eq'n is
2HCl + (1)Carbonate = (1)Salt + (1)Water + (1)Carbon dioxide.
It takes 2 moles of NO to form 2 moles of NO2, so to form 4.67 moles of NO2 you would need 4.67 moles of NO.
Acids react with bases to form a neutral solution. This reaction typically produces water and a salt compound.
Salt can react with water to form a solution called a saline solution. It can also react with certain metals, such as iron, to cause corrosion. Additionally, salt can react with acids and bases to form different compounds.
For every 2 moles of A3, 3 moles of B2 react to form 6 moles of AB. Since we have 10 moles of A3, we need to double the moles of B2 reacting, which would be 15 moles of B2 to fully react with the 10 moles of A3. This would produce 30 moles of AB.
The balanced equation for the reaction is: 2SO2 + O2 -> 2SO3. Therefore, 1 mole of O2 is needed to react with 2 moles of SO2 to form 2 moles of SO3. So for 200 moles of SO2, you would need 100 moles of O2. At STP, 1 mole of any gas occupies 22.4 L, so the volume of O2 needed would be 2240 L (100 moles x 22.4 L).
It takes 2 moles of NO to form 2 moles of NO2, so to form 4.67 moles of NO2 you would need 4.67 moles of NO.
If 2 moles of Na2CrO4 react completely, they will form the same number of moles of NaCl. This is because the mole ratio between Na2CrO4 and NaCl is 1:2. Therefore, 2 moles of Na2CrO4 will form 2 moles of NaCl.
The relative number of moles of hydrogen to moles of oxygen that react to form water represents the stoichiometry of the chemical reaction according to the balanced equation. This relationship reflects the proportions in which the reactants combine to form the products.
This is the amount of magnesium.
The ratio H/O is 2.
In the reaction 4 moles of aluminum will react with 3 moles of oxygen to form 2 moles of aluminum oxide. Since we have 2.0 moles of aluminum, we would need (2.0 mol Al) x (3 mol O2 / 4 mol Al) = 1.5 moles of O2 to react with it.
When an excess of AgNO3 solution is added to a one molar solution of CrCl(H2O)5Cl2, all the chloride ions (Cl⁻) from CrCl(H2O)5Cl2 will react with Ag⁺ ions to form AgCl precipitate. Since CrCl(H2O)5Cl2 contains 6 moles of Cl⁻ per mole of complex, the reaction will precipitate 6 moles of AgCl. Therefore, 6 moles of AgCl will be formed.
Acids react with bases to form a neutral solution. This reaction typically produces water and a salt compound.
3,44 moles H2 react with 1,146 moles NH3. The limiting reactant is hydrogen. O,244 moles N2 remain. 19,5 g NH3 are obtained.
Salt can react with water to form a solution called a saline solution. It can also react with certain metals, such as iron, to cause corrosion. Additionally, salt can react with acids and bases to form different compounds.
For every 2 moles of A3, 3 moles of B2 react to form 6 moles of AB. Since we have 10 moles of A3, we need to double the moles of B2 reacting, which would be 15 moles of B2 to fully react with the 10 moles of A3. This would produce 30 moles of AB.
The balanced equation for the reaction is: 2SO2 + O2 -> 2SO3. Therefore, 1 mole of O2 is needed to react with 2 moles of SO2 to form 2 moles of SO3. So for 200 moles of SO2, you would need 100 moles of O2. At STP, 1 mole of any gas occupies 22.4 L, so the volume of O2 needed would be 2240 L (100 moles x 22.4 L).