0.745*0.5 g
A potassium chloride (KCl) solution is colorless.
To find the volume of the solution, first calculate the number of moles of KCl in 2.39g using its molar mass (74.55 g/mol). Then, use the molarity equation (Molarity = moles of solute / volume of solution in liters) to find the volume of the solution.
The remaining 10 g of KCl forms a saturated solution in water, meaning the solution is in dynamic equilibrium with solid KCl dissolving and KCl ions re-crystallizing at the same rate. The resulting solution will contain both dissolved K+ and Cl- ions in equilibrium with undissolved KCl crystals.
This is a solution of 10 g KCl/100 g water.
The number of moles of KCl can be calculated by multiplying the volume of the solution in liters by the molarity of KCl. This results in 1.9 L * 0.90 mol/L = 1.71 mol of KCl in 1.9 L of a 0.90 M KCl solution.
I did not know that you could get a concentration of 75.66 M KCl, but; Molarity = moles of solute/Liters of solution 75.66 M KCl = moles KCl/1 liter = 75.66 moles of KCl 75.66 moles KCl (74.55 grams/1 mole KCl) = 5640 grams KCl that is about 13 pounds of KCl in 1 liter of solution. This is why I think there is something really wrong with this problem!
moles KCl = ( M solution ) ( V solution in L )moles KCl = ( 2.2 mol KCl / L solution ) ( 0.635 L of solution )moles KCl = 1.397 moles KCl
A potassium chloride (KCl) solution is colorless.
moles KCL = ( M solution ) ( L of solution )moles KCl = ( 0.83 mol KCl / L ) ( 1.7 L ) = 1.41 moles KCl
M= moles in solution/liters so plug in what you know 3.0M of KCl solution = moles in solution/ 2.0L multiply both sides by 2.0L moles solute = 1.5 moles KCl so you need 1.5 moles KCl to prepare the solution
To find the amount of KCl that remains in solution at 20 degrees Celsius, you can use the principle of solubility. Calculate the maximum amount of KCl that can dissolve in 200g of water at 20 degrees Celsius using a solubility chart. Once you have this value, compare it to the initial 80g of KCl to determine how much remains in solution after cooling.
Molar mass of KCl = 74.55g/mol.ie, if you dissolve 74.55g KCl in 1litre (1000 ml) of water, it will be 1M KCl solution.If you want to make 3M KCl solution,Dissolve 3 ×74.55 = 223.65g KCl in 1litre (1000 ml) of water.If you want to make different molar solutions of KCl, just calculate as per below given equation.Weight of KCl to be weighed =Molarity of the solution needed × Molecular weight of KCl (ie, 74.55) × Volume of solution needed in ml / 1000.To prepare 3M KCl in 1 litre, it can be calculated as follows,3 mol × 74.55 g/mol × 1000 ml / 1000 ml = 223.65gByPraveen P Thalichalam, Kasaragod (Dist), Kerala.
By definition, 1 liter of a 4 M solution must contain 4 moles of the solute. Because solutions are homogeneous mixtures and 250 ml is one quarter of a liter, the amount of KCl required is 1 mole. The gram molar mass* of KCl is 74.55 grams; this is therefore the amount of KCl required.** __________________________________ *Because KCl is an ionic rather than a molecular compound, its "gram molar mass" should preferably be called its "gram formula unit mass". **Strictly according to the rules of significant digits, this answer should be written as "7 X 10" grams, because the datum "4M" needed to calculate the answer contains only one significant digit.
To find the volume of the solution, first calculate the number of moles of KCl in 2.39g using its molar mass (74.55 g/mol). Then, use the molarity equation (Molarity = moles of solute / volume of solution in liters) to find the volume of the solution.
Need mole KCl first. 4.88 grams KCl (1 mole KCl/74.55 grams) = 0.06546 moles KCl =======================now, Molarity = moles of solute/Liters of solution ( 423 ml = 0.423 Liters ) Molarity = 0.06546 moles KCl/0.423 Liters = 0.155 M KCl ------------------
The remaining 10 g of KCl forms a saturated solution in water, meaning the solution is in dynamic equilibrium with solid KCl dissolving and KCl ions re-crystallizing at the same rate. The resulting solution will contain both dissolved K+ and Cl- ions in equilibrium with undissolved KCl crystals.
That completely depends on how much solution you need to end up with.If the solution is to be 1,000 ppm by weight (or mass), then you add 1 gramof KCl to each liter of water.