nun i think
It depends on the mass of the wall, and how fast you can accelerate the object you are using to break the wall. this is because Net Force (what you would need to break the wall) = mass times acceleration
The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.
The energy contained within an atom is determined by its nucleus and the arrangement of its electrons. This energy is known as the atom's binding energy, which is the amount of energy required to break the nucleus apart. The binding energy of an atom varies depending on its size and composition.
Gravitational force is often associated with an object's potential energy. The potential energy of an object is related to its position in a gravitational field, and the force of gravity acting on the object determines how much potential energy it has.
To break away from Earth's gravity and reach space, an object needs to reach an escape velocity of about 11.2 kilometers per second (about 25,000 mph). The force required to achieve this velocity is enormous and depends on the mass of the object. For example, a spacecraft with humans onboard would need powerful rockets to generate enough force to break free from Earth's gravity.
Basketball was developed out of a desire for a vigorous sport. why was there a desire for a sport that required so-much energy?
The measurement of how much heat energy is required for a substance to melt is called the heat of fusion. It is the amount of energy required to change a substance from a solid to a liquid at its melting point.
Once you break free of the Earth's gravity, any velocity greater than zero will eventually reach Saturn, assuming the path is correct to collide with Saturn and no outside variables interfere.
Endocytosis requires energy in the form of ATP to occur.
36.8 kj
Bond dissociation enthalpy (BDE) is a measure of how much energy is required for a bond to break in a molecule or compound. This can be quite low, e. a C-H bond, or extremely high, like a N-N triple bond, which needs almost 1000 kJ mol-1 of energy to break the bond.
The factors that determine the gravitational potential energy of an object are its mass, the acceleration due to gravity, and its height above a reference point. The gravitational potential energy of an object increases with mass, height, and strength of gravity.