answersLogoWhite

0

Okay here is what you want to do. You rearrange your equation of

V1=a/d so that it looks like this --> v2= dxa and that is how you get your answer

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

How do you find a final velocity without distance but given time?

Without distance, you have to know time, initial velocity, and acceleration, in order to find final velocity.


How do you find the distance if only the final velocity and the acceleration is given?

You can find the distance using the equation: distance = (final velocity)^2 / (2 * acceleration). Square the final velocity, divide it by twice the acceleration to get the distance traveled before coming to a stop.


How can one find the acceleration of an object using the given distance and time measurements?

To find the acceleration of an object, you can use the formula: acceleration change in velocity / time taken. If you have the distance and time measurements, you can calculate the velocity by dividing the distance by the time. Then, you can find the change in velocity by subtracting the initial velocity from the final velocity. Finally, divide the change in velocity by the time taken to find the acceleration.


When calculating acceleration to find the change in velocity you subtract the what velocity from the final velocity?

When calculating acceleration to find the change in velocity, you subtract the initial velocity from the final velocity. The formula for acceleration is: acceleration = (final velocity - initial velocity) / time.


To find acceleration you subtract what?

To find acceleration, you subtract the initial velocity from the final velocity and then divide by the time taken to achieve the change in velocity. The formula for acceleration is (final velocity - initial velocity) / time.


How to find the final velocity when given the acceleration and time?

To find the final velocity when given the acceleration and time, you can use the formula: final velocity initial velocity (acceleration x time). Simply plug in the values for acceleration and time, and calculate the final velocity.


How do you find distance with final velocity and minimum acceleration?

To find the distance using final velocity and minimum acceleration, you can use the formula: distance = (final velocity)^2 / (2 * acceleration). Simply square the final velocity, then divide by 2 times the minimum acceleration to get the distance traveled.


How to find acceleration using velocity and time?

To find acceleration using velocity and time, you can use the formula: acceleration (final velocity - initial velocity) / time. Simply subtract the initial velocity from the final velocity and divide by the time taken to find the acceleration.


What would you use to find the acceleration?

The answer depends on the context: You can find the acceleration if you know any three of : initial velocity, final velocity, time, distance travelled. You can find it if you know the mass and force. You know the two masses and the distance between them (gravitational acceleration).


What information do you need in order to find a object's acceleration?

To find an object's acceleration, you need its initial velocity, final velocity, and the time it takes to change from the initial velocity to the final velocity. The formula for acceleration is (final velocity - initial velocity) / time elapsed.


To find the acceleration of an object moving in a straight line you must calculate the charge in distance during unit of time?

To find the acceleration of an object moving in a straight line, you must calculate the change in velocity during a unit of time. Acceleration is the rate of change of velocity over time, not distance. It is given by the formula acceleration = (final velocity - initial velocity) / time.


How do you find acceleration falling object with only speed and distance?

a = (v2 - u2)/2s where a is the acceleration between the initial point in time and the final point in time, u is the initial velocity v is the final velocity s is the distance travelled