Acceleration due to gravity pulls an object closer to the mass which exerts the force. Masses are attracted to masses. Due to newton's third law, if an object is on a surface, the opposite reaction to gravity would be normal force.
An object's size does not directly affect its gravity. Gravity depends on an object's mass and distance from other objects. However, larger objects with more mass tend to have stronger gravitational pulls.
Gravity has no effect on the mass of an object. However, an object's weight is the measurement of gravitational force on the object. The gravitational force on the moon for example is ~ 1/6 of that on Earth. A 300 kg object would weigh 3000N (Newtons) on the Earth but only weigh 500 N on the Moon but its mass would still be 300 kg on the Moon and on the Earth.
In zero gravity, inertia would remain the same as in normal gravity. Inertia is a property of a body that causes it to resist changes in its motion, regardless of the presence or absence of gravity. Thus, objects in zero gravity would still exhibit the same resistance to changes in motion as they would in a gravitational environment.
Friction and acceleration due to gravity do not directly affect the weight of an object. Weight is determined by the gravitational force acting on the object, which is independent of these factors. However, friction can affect the apparent weight of an object on a surface by opposing the force of gravity.
The factors that affect the ability of gravity to do work include the distance the object falls, the mass of the object, and the presence of other forces that may oppose gravity, such as friction or air resistance. The work done by gravity is determined by the height through which the object falls and the force of gravity acting on the object.
Mass doesn't change. Mass the is substance of an object, moving it around won't affect how much mass it has, only adding or subtracting from the object would affect the quantity of mass. The weight would change because gravity is inversely proportional to distance but not the mass.
Weight directly impacts the position of an object's center of gravity. The center of gravity is the point where the weight of an object can be considered to act. As an object's weight increases, the center of gravity shifts towards the heavier end of the object.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
Gravity and friction.
No, mass remains constant.
Sin no
Gravity affects an object's weight, which is the force of gravity acting on its mass. The mass of an object remains the same regardless of its location, but its weight can change depending on the strength of gravity. In areas with stronger gravity, objects will weigh more compared to areas with weaker gravitational pull.