When you pored it into the beaker it would be there. It has to be added by some process. Using the faucet or another container with water in it would be the simplest manner.
it would be the same
There would be 1100 ml of water in the beaker now.
because the water in the beaker would evaoprate into it then condense on the surface of the syringe
Well, darling, a 250 mL beaker filled with 100 mL of water would have a mass of approximately 100 grams. Water has a density of 1 g/mL, so 100 mL would weigh 100 grams. The beaker itself doesn't add any weight, unless you're counting the weight of your expectations.
Because there is a greater volume of water in beaker B, the beaker would have to be heated for a longer period of time to reach the same temperature as beaker A. If your desire is to have both beakers warmed to the same temperature at the same time, beaker B would require the addition of more heat (because there is more water inside it).
The water in the beaker evaporated or was poured out.
The volume of the water in Beaker X will be 100cm3, as you are not adding any more water to the equation (50X+100Y is not 150Y or X, but 50X+100Y) The total volume of matter in Beaker X will be 150cm3, and if the beaker is labelled, the volume measure will indicate 150cm3 due to the displacement of water. But as the answer to your question, the volume of water in Beaker X must be 100cm3 even though visual indicators will not show this due to the displacement of water by marbles
There are more particles in the beaker with a large amount of water compared to a beaker with a small amount of water, assuming the water is the only substance present. This is because the volume of water in the larger beaker contains more individual water molecules than the volume of water in the smaller beaker.
Yes, condensation could form on the outside of a beaker full of hot water if the surrounding air is cool enough to cause the water vapor in the air to condense on the cooler surface of the beaker. This is similar to how condensation forms on a cold glass of water on a warm day.
Beaker A: 15 C Beaker B: 37 C Beaker B contains water molecules that have the greater kinetic energy (on average). Since beaker B is at a higher temperature than beaker A, the water molecules must be moving faster in beaker B than in beaker A (on average). If heat is being applied to the beakers, then the increased amount of heat applied to beaker B is greater, and the heat will cause the water molecules in beaker B to move faster than the water molecules in beaker A (on average). Kinetic energy = (1/2) (mass) (velocity)^2 Since the velocity of the a water molecule in beaker B is on average greater than the velocity of an average water molecule in beaker A, the water in beaker B has a higher kinetic energy.
The temperature of a beaker is typically measured using a thermometer that is placed in the water inside the beaker. The thermometer will provide a reading of the water temperature, which indirectly reflects the temperature of the beaker as well.
it would absorb more and more water until it will explode