The density of what? But regardless the answer to that:
Density is mass per volume. Mass is not influenced by the upward force of the fluid in which the object is submerged. The weight, on the other hand, is. Weight is a force, and mass is an amount of matter.
The factors that affect the bounce of a dropped ball include...... the height from which it is dropped; the force applied to it, if any, when dropped; the acceleration of gravity, which is different depending upon what planet you're on ; the elasticity of the ball; the density of the atmosphere, which affects "air resistance"; and the rigidity and elasticity of the surface on which the ball bounces.
Factors that affect the bounce of a dropped ball include the material and elasticity of the ball, the surface it lands on, the height from which it is dropped, and the force with which it is dropped. The higher the drop height and the greater the force of impact, the higher the ball will bounce, provided the surface allows for a rebound.
The factors that affect the bounce of a dropped ball include...... the height from which it is dropped; the force applied to it, if any, when dropped; the acceleration of gravity, which is different depending upon what planet you're on ; the elasticity of the ball; the density of the atmosphere, which affects "air resistance"; and the rigidity and elasticity of the surface on which the ball bounces.
volume does affect the density because the formula of density= mass/ volume
Yes, water density will affect an object's ability to float.
Rock density has no direct affect on war.
sexx
Density=mass/volume
Changing the water's mass will affect how much the water's temperature increases when a cylinder is dropped due to the principle of heat capacity. A larger mass of water has a greater capacity to absorb heat, meaning that the temperature increase will be smaller for a given amount of heat transferred from the cylinder. Conversely, a smaller mass of water will experience a greater temperature increase because it has less mass to absorb the same amount of heat. Therefore, the relationship between water mass and temperature change is inversely proportional.
No, a change in mass alone does not affect the density of an object. Density is determined by the mass of the object and the volume it occupies, so changes in mass need to be accompanied by corresponding changes in volume to affect an object's density.
i
Botulism can affect anyone that eats food containing the bacteria.