answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: If the radius of rotation and the mass being kept constant how does centripetal force vary with the speed of rotation body?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

If the radius of rotation and the mass being kept constant how does the centripetal force vary with the speed of rotation of the body?

Recall centripetal force = m v^2 / rAs m and r are found to be constants then centripetal force F is directly proportional to the square of the velocity of the body


What does Centrifugal forces increases with?

This is centripetal force Fc = mv2/r, so an increase of mass or velocity and a decrease of radius will increase the centripetal force (or send the object flying away quite fast).. Centrifugal force is only a feeling of being pushed to the outside, based on human perception


Why would orbiting space stations that simulate gravity likely be large structures?

Artifical gravity is created by the outward acceleration (centrifugal force) as an object rotates around an axis of rotation. The magnitude of this outward acceleration is given by the centripetal acceleration, which is the opposing inward acceleration keeping the rotating object in circular orbit around the rotating object. In space, this would be done by rotating a space station until the centripetal acceleration is equal to the acceleration of gravity on Earth. Centripetal acceleration is given by the equation: Centripetal Acceleration = Velocity2/ Radius. As you can see, the magnitude of the centripetal acceleration is largely dependent upon the object's distance (distance) from the axis of rotation. Thus, in a space station that is fairly small (has a small radius), a standing astronaut will feel a different centripetal acceleration in his head than in his feet. Take the example of an astronaut standing up in a circular rotating space station with radius 5m and rotating at a speed of 7 m/s. At the astronauts feet (about 5 meters from the axis of rotation), the astronaut's centripetal acceleration will be given by the following equation. CA = 72/5 --> CA = 9.8 m/s2. This is roughly equal to Earth's gravitation acceleration. Now, lets see the magnitude of centripetal acceleration at the astronauts head. If the astronaut is 6 feet tall (about 1.83 meters), then the radius of rotation at the astronauts head is only 3.17 meters (5 meters - 1.83 meters). The speed of rotation will also be slower because the astronauts head, being closer to the axis of rotation, will have to complete a relatively smaller circle to complete one rotation in the same amount of time as the feet. After calculations, the resulting speed of rotation is 4.289 m/s rather than 7m/s. Thus, the centripetal acceleration at the astronauts head is given by the following equation: CA = 4.2892/3.17 --> CA=5.803 m/s2. Thus, we see a serious inconsistency between the centripetal acceleration at the feet of the astronaut and at the head of the astronaut (9.8 m/s2 at the feet and 5.803 m/s2 at the head). This difference would make the astronaut feel extremely uncomfortable and nauseated, rendering them unable to function at the high level needed for space. Instead, lets look at a large space station design. Take, for example, the Stanford Torus, a design that consists of a large 1.8 km in diameter rotating ring. At this large size, the space station would only need to rotate at one rotation per minute and at a rotating speed of 94.24 m/s in order to simulate Earth's gravitational acceleration. with a radius of 900m, the 1.83 meter difference between a astronaut's feet and head would be negligible and thus an astronaut would feel just as if he or she were on Earth. This is why space stations that intend to simulate gravity should be built large enough to minimize the significance of the difference between the radius of rotation of one's feet and one's head.


What provides the centripetal force for a basket being whirled in a vertical circle?

Whatever is holding the basket - for example, your arm.


What is the difference of centripetal force and centrifugal force?

Centripetal force is directed toward the center of rotation of an orbiting body or object following a curved path. Centrifugal force is the apparent force, equal and opposite to the centripetal force, drawing a rotating body away from the center of rotation, caused by the inertia of the body. Whenever you see a moving object that's not traveling in a straight line, you know that a force is acting upon it. That's because objects tend to resist changes to their velocities. The greater the mass, the greater the resistance to changes in velocity. That's called inertia. Objects at rest tend to stay at rest, and objects in motion tend to stay in motion, unless acted upon by some external force. (See Newton's First Law.) Since velocity is a vector -- remember vectors have magnitude AND direction -- any change in an object's direction constitutes a changes in its velocity. When an object is flying around in a circle, its velocity is constantly changing because its direction is constantly changing! That means a force is working on it. That force is the centripetal force, and since force is equal to mass times acceleration, there must be an acceleration involved. You guessed it -- centripetal acceleration. In short: Centrifugal force is away from the center and centripetal force is towards the center. In even shorter: Centripetal force is real. Centrifugal force doesn't exist.

Related questions

If the radius of rotation and the mass being kept constant how does the centripetal force vary with the speed of rotation of the body?

Recall centripetal force = m v^2 / rAs m and r are found to be constants then centripetal force F is directly proportional to the square of the velocity of the body


What is the centripetal acceleration of an object being swung on a string with a radius of 3 meters at a velocity of 4 meters per second?

Use the formula for centripetal acceleration: velocity squared / radius.


What does Centrifugal forces increases with?

This is centripetal force Fc = mv2/r, so an increase of mass or velocity and a decrease of radius will increase the centripetal force (or send the object flying away quite fast).. Centrifugal force is only a feeling of being pushed to the outside, based on human perception


Why would orbiting space stations that simulate gravity likely be large structures?

Artifical gravity is created by the outward acceleration (centrifugal force) as an object rotates around an axis of rotation. The magnitude of this outward acceleration is given by the centripetal acceleration, which is the opposing inward acceleration keeping the rotating object in circular orbit around the rotating object. In space, this would be done by rotating a space station until the centripetal acceleration is equal to the acceleration of gravity on Earth. Centripetal acceleration is given by the equation: Centripetal Acceleration = Velocity2/ Radius. As you can see, the magnitude of the centripetal acceleration is largely dependent upon the object's distance (distance) from the axis of rotation. Thus, in a space station that is fairly small (has a small radius), a standing astronaut will feel a different centripetal acceleration in his head than in his feet. Take the example of an astronaut standing up in a circular rotating space station with radius 5m and rotating at a speed of 7 m/s. At the astronauts feet (about 5 meters from the axis of rotation), the astronaut's centripetal acceleration will be given by the following equation. CA = 72/5 --> CA = 9.8 m/s2. This is roughly equal to Earth's gravitation acceleration. Now, lets see the magnitude of centripetal acceleration at the astronauts head. If the astronaut is 6 feet tall (about 1.83 meters), then the radius of rotation at the astronauts head is only 3.17 meters (5 meters - 1.83 meters). The speed of rotation will also be slower because the astronauts head, being closer to the axis of rotation, will have to complete a relatively smaller circle to complete one rotation in the same amount of time as the feet. After calculations, the resulting speed of rotation is 4.289 m/s rather than 7m/s. Thus, the centripetal acceleration at the astronauts head is given by the following equation: CA = 4.2892/3.17 --> CA=5.803 m/s2. Thus, we see a serious inconsistency between the centripetal acceleration at the feet of the astronaut and at the head of the astronaut (9.8 m/s2 at the feet and 5.803 m/s2 at the head). This difference would make the astronaut feel extremely uncomfortable and nauseated, rendering them unable to function at the high level needed for space. Instead, lets look at a large space station design. Take, for example, the Stanford Torus, a design that consists of a large 1.8 km in diameter rotating ring. At this large size, the space station would only need to rotate at one rotation per minute and at a rotating speed of 94.24 m/s in order to simulate Earth's gravitational acceleration. with a radius of 900m, the 1.83 meter difference between a astronaut's feet and head would be negligible and thus an astronaut would feel just as if he or she were on Earth. This is why space stations that intend to simulate gravity should be built large enough to minimize the significance of the difference between the radius of rotation of one's feet and one's head.


What is the centripetal acceleration of an object being swung on a string with a radius of 5 meters at a velocity of 4 meters a second?

Use the formula a = v2 / r, with v = velocity (speed, actually) in meters/second, r = radius in meters. The answer will be in meters per square second.


What is the difference centrifiugal force and centripetal force?

centripetal is the force pulling towards the center of a circle. And centrifiugal is artificial gravity. It makes you "feel" like you are being pulled into one direction when you are being pulled to the other.


What is radioulnar joints and which type of movement occurs?

The proximal and distal are pivot synovial while the middle is syndesmosis/fibrous


The elements of the earth are in a constant process of being?

constant process of being used.


Does centripetal mean balanced or unbalanced?

Centripetal force acting on an orbiting object is unbalanced since the object is being accelerated.Velocity is continually changing direction if not speed. This means an orbiting object is accelerating and the direction of acceleration is toward the center. In fact, centripetal means "center seeking."A person at rest on the surface of the Earth is being acted upon by a centripetal force (toward the center of the Earth, that is, down) which is exactly equal and opposite to the spring force of the Earth's matter pushing up. Thus, in this case, the centripetal force is balanced.The previous answer (below) is generally incorrect.No,because when a body revolves round an orbit,its CENTRIPETAL force is balanced by the WEIGHT of the body!thank you!!


How did you get 9 mm being the radius of a diameter of a circle being 18 explain?

The radius of any circle is its diameter divided in half. So: 18mm/2 = a radius of 9mm


What provides the centripetal force for a basket being whirled in a vertical circle?

Whatever is holding the basket - for example, your arm.


Why don't we feel the rotation of the earth?

Because the Earth is travelling at a constant speed. i.e. it is not accelerating. Another example of this can be found in the car. When the car is accelerating, we can feel ourselves being pushed into our seats, but when we are travelling on a motorway at the same speed, we do not get this feeling.