0.5atm
The pressure inside a 50-liter oxygen cylinder typically ranges from 2000 to 3000 pounds per square inch (PSI), depending on the type of cylinder and the amount of oxygen it contains.
This problem can be solved with the ideal gas law. The original pressure and volume of the container are proportional the final pressure and volume of the container. The original pressure was 1 atmosphere and the original volume was 1 liter. If the final volume is 1.8 liters, then the final pressure is 0.55 atmospheres.
At Standard Temperature and Pressure (STP), one mole of any ideal gas will occupy 22.4 liters. So to fill a 2.0 liter container at STP, you would need 2.0/22.4 = 0.089 moles of an ideal gas. This means any gas that is present in that amount and under those conditions can uniformly fill the container.
Yes, oxygen has a density of around 1.429 grams per liter at standard temperature and pressure. It is denser than air, which is a mixture of gases that includes oxygen.
1 liter of oxygen weighs approximately 1.43 grams.
0
No, it is not possible to compress 10 liters of oxygen into a 1-liter volume. The volume of gas is dictated by its pressure and temperature through the ideal gas law, which means you cannot reduce 10 liters of gas into 1 liter without changing these properties significantly.
There is most likely a more efficient way to do this, but this is the best I can do for now.Notation: ( x , y ) where x is the amount of water in the 5-liter container and y is the amount of water in the 7-liter container1. Fill the five-liter container ( 5 , 0 )2. Pour the five-liter container into the seven-liter container ( 0 , 5 )3. Fill the five-liter container ( 5 , 5 )4. Fill the seven-liter container with the five-liter container, leaving 3 liters in the five-liter container ( 3 , 7 )5. Pour out the seven-liter container ( 3 , 0 )6. Pour the five-liter container into the seven-liter container ( 0 , 3 )7. Fill the five-liter container ( 5 , 3 )8. Fill the seven-liter container with the five-liter container, leaving 1 liter in the five-liter container ( 1 , 7 )9. Pour out the seven-liter container ( 1 , 0 )10. Pour the five-liter container into the seven-liter container ( 0 , 1 )11. Fill the five-liter container ( 5 , 1 )12. Pour the five-liter container into the seven-liter container ( 0 , 6 )
The pressure measured in a closed two-liter container would depend on factors such as the temperature and the amount of gas or liquid inside the container. If the container is sealed and there is no chemical reaction occurring inside, the pressure would remain constant at the equilibrium pressure of the system.
One liter of oxygen (O2) gas at standard temperature and pressure (STP) \ill contain 1/22.4 of a mole of molecules. STP is defined as 0 degrees Celsius at 1 atm of pressure.
all of it - the air would expand to fit the entire container.
Hemoglobin in blood carries about 280 ml of oxygen/ liter. That bond is tight enough to carry oxygen and loose enough to give at pressure gradient difference. If erythropoiesis does not occur in body you can carry only 4 ml / liter of oxygen/ liter in body and you will not survive with such a low supply of oxygen.
The pressure inside a 50-liter oxygen cylinder typically ranges from 2000 to 3000 pounds per square inch (PSI), depending on the type of cylinder and the amount of oxygen it contains.
I assume you mean at standard temperature and pressure. Use, PV = nRT (1 atm)(1 liter) = n(0.08206 L*atm/mol*K)(298.15 K) n = 1/24.466 = 0.04 moles oxygen gas --------------------------------
This problem can be solved with the ideal gas law. The original pressure and volume of the container are proportional the final pressure and volume of the container. The original pressure was 1 atmosphere and the original volume was 1 liter. If the final volume is 1.8 liters, then the final pressure is 0.55 atmospheres.
10
A liter is a liter. That is a tautology. ----------------------------------------------------------------- If the oxygen is in liquid form, then there is 1 litre in a 1 litre flask.