A graph of distance against time.
In a displacement-time graph, the gradient represents velocity. In a velocity-time graph, the gradient represents acceleration.
If velocity is constant, the slope of the graph on a position vs. time graph will be a straight line. The slope of this line will represent the constant velocity of the object.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
No, displacement is the area under the velocity vs. time graph. The slope of a velocity vs. time graph represents acceleration.
The position vs time graph of an object shows its location at different times, while the velocity vs time graph shows how fast the object is moving at those times. The slope of the position vs time graph represents the velocity on the velocity vs time graph.
A velocity time graph is still a velocity time graph - no matter the degree of detail that you look at it.
If an x-t graph is a position-time graph, velocity is the slope of the line on the graph.
In a displacement-time graph, the gradient represents velocity. In a velocity-time graph, the gradient represents acceleration.
Your acceleration vs. Time graph is the slope of your velocity vs. time graph
To create an acceleration-time graph from a velocity-time graph, you need to find the slope of the velocity-time graph at each point. The slope represents the acceleration at that specific instant. Plot these acceleration values against time to get the acceleration-time graph.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
If velocity is constant, the slope of the graph on a position vs. time graph will be a straight line. The slope of this line will represent the constant velocity of the object.
No, acceleration is the rate of change of velocity with respect to time. It is the derivative of the velocity function, not the slope of the velocity vs. time graph. The slope of the velocity vs. time graph represents the rate of change of velocity, not acceleration.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
No, displacement is the area under the velocity vs. time graph. The slope of a velocity vs. time graph represents acceleration.
The position vs time graph of an object shows its location at different times, while the velocity vs time graph shows how fast the object is moving at those times. The slope of the position vs time graph represents the velocity on the velocity vs time graph.
To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.