answersLogoWhite

0

To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

How can one determine velocity from an acceleration-time graph?

To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.


How can one determine velocity from a position-time graph?

To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How can one learn to find kinematic variables from a graph of position vs. time?

To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.


What is the method for finding the position of an object from a velocity-time graph?

To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.


Find position given velocity vs time graph?

To find the position from a velocity-vs-time graph, you need to calculate the area under the velocity curve. If the velocity is constant, the position can be found by multiplying the velocity by the time. If the velocity is changing, you need to calculate the area under the curve using calculus to determine the position.

Related Questions

How do you find the average velocity on a graph?

The answer depends on what variables the graph shows.


How can one determine velocity from an acceleration-time graph?

To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.


How do you make an acceleration time graph from the data of a velocity time graph?

To create an acceleration-time graph from a velocity-time graph, you need to find the slope of the velocity-time graph at each point. The slope represents the acceleration at that specific instant. Plot these acceleration values against time to get the acceleration-time graph.


How do you find instantaneous velocity from position time graph?

You can't, since the slope of the graph means average velocity and the area of the graph has no meaning. The only way to find instantaneous velocity from position-time gragh is by plugging the data into the kinematic equations to get the answer. Edit: Actually you can if you take the derivative of the equation of the curve it will give you the equation of the velocity curve


How do you find the time acquired by initial velocity in an acceleration -time graph?

To find the time taken to acquire a certain velocity in an acceleration-time graph, locate the point on the graph where the velocity reaches the desired value. Then, find the corresponding time on the horizontal axis at that point. This time value represents the time taken to acquire the initial velocity.


How can one determine velocity from a position-time graph?

To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How do you go from a position graph to a velocity graph?

you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.


What is the difference between a velocity time graph and a position time graph?

Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.


How can one learn to find kinematic variables from a graph of position vs. time?

To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.


How do you find the distance from a velocity time graph?

this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.


What is the method for finding the position of an object from a velocity-time graph?

To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.


What is a velocity time graph in detail?

A velocity time graph is still a velocity time graph - no matter the degree of detail that you look at it.