postion is the area under the slope
To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.
To determine an object's position from a velocity graph, you can find the area under the velocity curve. The area represents the displacement or change in position of the object. The position at any given time can be calculated by adding up the areas under the curve up to that time.
To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.
To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.
To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
To determine an object's position from a velocity graph, you can find the area under the velocity curve. The area represents the displacement or change in position of the object. The position at any given time can be calculated by adding up the areas under the curve up to that time.
To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
You can't, since the slope of the graph means average velocity and the area of the graph has no meaning. The only way to find instantaneous velocity from position-time gragh is by plugging the data into the kinematic equations to get the answer. Edit: Actually you can if you take the derivative of the equation of the curve it will give you the equation of the velocity curve
To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.
To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.
To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
To find the position of an object from a velocity vs. time graph, you need to calculate the area under the velocity vs. time curve. This area represents the displacement of the object.
Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
To calculate velocity from a position-time graph, you can find the slope of the line tangent to the curve at a specific point. This slope represents the instantaneous velocity at that point. Alternatively, you can calculate the average velocity over a specific time interval by finding the change in position divided by the change in time.