To calculate velocity from a position-time graph, you can find the slope of the line tangent to the curve at a specific point. This slope represents the instantaneous velocity at that point. Alternatively, you can calculate the average velocity over a specific time interval by finding the change in position divided by the change in time.
To determine the average acceleration from a velocity-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.
To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.
From a velocity-time graph, you can calculate the acceleration by finding the slope of the graph at a certain point. The area under the graph represents the displacement of the object. You can also determine the direction of motion based on the slope of the graph (positive slope indicates motion in one direction, negative slope indicates motion in the opposite direction).
To determine velocity on a position-time graph, calculate the slope of the line at a specific point. The slope represents the rate of change in position over time, which is the velocity. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
To determine the average acceleration from a velocity-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.
To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.
From a velocity-time graph, you can calculate the acceleration by finding the slope of the graph at a certain point. The area under the graph represents the displacement of the object. You can also determine the direction of motion based on the slope of the graph (positive slope indicates motion in one direction, negative slope indicates motion in the opposite direction).
To determine velocity on a position-time graph, calculate the slope of the line at a specific point. The slope represents the rate of change in position over time, which is the velocity. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
To determine acceleration from a distance-time graph, calculate the slope of the graph at a specific point. The steeper the slope, the greater the acceleration. The formula for acceleration is acceleration change in velocity / time.
The product of velocity and time yields distance travelled if the velocity is constant for the time in question. If velocity is not constant, one must first calculate the average velocity over a given time period before multiplying it by the time involved.
To determine the average acceleration from a position-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.
To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.
Distance covered at a given time.
The velocity of an object can be determined from a displacement-time graph by calculating the slope of the graph at a specific point. The slope at a given point represents the instantaneous velocity of the object at that point. The steeper the slope, the greater the velocity, with positive slopes indicating motion in one direction and negative slopes indicating motion in the opposite direction.