NO. They all have gravity.
The sun is not the only gravitational force but it is the strongest, the earth has a gravitational force, the moon has a gravitational force etc. Any two objects have a gravitational force between them that is proportional to their masses and inversely proportional to the square of the distance between them.
The gravitational force of a planet (or body in space) is directly related to its mass. Mercury is the planet with the least mass in the Solar System. Based on its size Mercury has only 1/3 of the gravitational force felt on Earth. Therefore, if you weigh 100-pounds on Earth, you would only be some 33 on Mercury's surface.
Gravitational force depends only on the masses involved, and on the distance. Thus, to DECREASE the gravitational force, you would have to reduce the mass of the planet or the object (take some stuff away from it); or increase the distance.
Earth's atmosphere is the result of the gravitational entrapment of gases from volcanic release, plant and animal gas production, carbon storage in rocks and seawater, and the protective effect of Earth's magnetosphere.
Gravitational force depends only on an object's mass and its distance from the center of the earth. Its speed has no effect on the gravitational force.
Because there is no range limit on the gravitational force, the gravitational force of the earth is only zero in the exact centre of the earth, where it cancels itself out. Realistically, the force is so small outside the immediate vicinity of earth, that it may as well be zero.
Only in its magnitude ... about 38% of its magnitude on Earth.
The gravitational force on the surface of Jupiter is approximately 2.5 times stronger than the gravitational force on the surface of Earth. This is because Jupiter is a much larger and more massive planet than Earth, resulting in a stronger gravitational pull.
No. The gravitational force is a different force from magnetism, and depends only on the mass and the distance. Specifically, a body does not need to rotate to have gravitational force.
The value of the gravitational field strength on a planet with half the mass and half the radius of Earth would be the same as Earth's gravitational field strength. This is because the gravitational field strength depends only on the mass of the planet and the distance from the center, not on the size or density of the planet.
The Earth and the object exert a gravitational force on each other, but only the Earth's is big enough to measure. So, the formula for gravitational force include the distance from one body's surface to its center and the same for the other body. The length of the radius is directly proportional to the body's gravitational force.
Anything with mass include you and me do exert gravitational force but the earth is massive so it exert more force than any of any small object including us on earth. The gravitational force is done between two mass in following general gravitational law by Newton. F = G.M1m2/R2 We sum up G.M1/R2 as gravity = 9.81 m/s2 for M1 is earth and R = earth radius Between 2 man with m1 and m2 respectively, gravitational force between these two man is at F = G.m1m2/L2 where L = distance between center of mass (you and me for instance). Gravitational force is small compare to earth's gravitational force but it does exist.