Most likely not. The duration and current supplied by a capacitor in the microFarad range would be short and small, respectively.
On the other hand, of one were touched by the capacitor leads on the eyeball, really thin-skinned areas, or for some reason across the chest over the heart, some damage and/or great pain could happen.
Capacitor voltage
The relationship between capacitance and voltage in an electrical circuit is that capacitance is a measure of how much charge a capacitor can store for a given voltage. In simple terms, the higher the capacitance, the more charge a capacitor can hold for a given voltage. Conversely, the higher the voltage applied to a capacitor, the more charge it can store for a given capacitance.
Capacitance is not inversely proportional to voltage, rather capacitance is a measure of how much charge a capacitor can hold for a given voltage. The capacitance value remains constant regardless of the voltage applied across the capacitor. The relationship between capacitance, voltage, and charge is governed by the formula Q = CV, where Q is charge, C is capacitance, and V is voltage.
The two factors that determine the capacitive reactance of a capacitor are the frequency of the AC voltage applied to the capacitor and the capacitance value of the capacitor. At higher frequencies and with larger capacitance values, the capacitive reactance decreases.
Capacitor is the name of the device and capacitance is a measure of farads in the capacitor. Capacitance is the capacity for storing charge in the capacitor as measured in farads, micro farads or millifarads.
In an electrical circuit, voltage is directly proportional to charge and inversely proportional to capacitance. This means that as the voltage increases, the charge stored in the capacitor also increases, while capacitance decreases. Conversely, if capacitance increases, the voltage across the capacitor decreases for a given charge.
To determine the charge on a capacitor, you can use the formula Q CV, where Q is the charge, C is the capacitance of the capacitor, and V is the voltage across the capacitor. By measuring the capacitance and voltage, you can calculate the charge on the capacitor using this formula.
The maximum charge that can be stored on a capacitor is determined by the capacitance of the capacitor and the voltage applied to it. The formula to calculate the maximum charge is Q CV, where Q is the charge, C is the capacitance, and V is the voltage.
Capacitance is a measure of how much charge a capacitor can store for a given voltage. As the voltage across a capacitor increases, the capacitance typically remains constant. However, in some cases, the capacitance may change slightly due to factors like dielectric breakdown or non-linear effects.
A capacitor is a device that stores an electrical charge, or if you prefer- resists any change in voltage applied to it. Capacitance is a measure of the size or ability of a capacitor to do that. This is the Farad
A capacitor resists a change in voltage, proportional to current, and inversely proportional to capacitance. The equation of a capacitor is dv/dt = i/c.
You measure the capacitance of a capacitor in an active circuit by observing the voltage across it and the current through it. That gives you, by Ohm's law, the impedance of the capacitor. Plug that in the the equation for capacitive reactance, and you get capacitance. Note: There is no such thing as a three phase capacitor. A capacitor is a two terminal device that resists a change in voltage inversely proportional to its capacitance. You connect one capacitor to one phase. If you have a "three phase capacitor", then you are talking about three capacitors. Deal with each one separately.