answersLogoWhite

0


Best Answer

According to Kepler's first law a planet's orbit is an ellipse with the Sun at one focus. An ellipse is a closely defined mathematical shape, while eggs have a more varied shape that cannot be defined closely.

The amount of elongation of an ellipse is measured by the eccentricity, which measures how far each focus is from the centre.

The planets have orbits with low eccentricity which means that the orbits are very nearly circular.

The Earth's orbit has a semimajor axis of a=149.6 million km and and eccentricity of e=1/60. The Sun is off-centre by a distance equal to ae which is 2.5 million km, so the distance varies from 147.1 in January to 152.1 million km in July, at the opposite ends of the major axis. The semiminor axis is only 0.014% smaller, so the amount of elongation is extremely small.

This explains why it took so long to discover that the orbits are elliptical, because the old circle/epicycle theory produced very good results until observations became accurate enough to see problems with it, which happened when Tycho Brahe came up with measurement techniques that were more accurate than ever before. That was at the end of the 16th century.

User Avatar

Wiki User

7y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is a planet's orbital a perfect ellipse or more egg-shaped?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Who stated that planets revolve around the sun in an ellipse?

Johannes Kepler stated that the planets revolve around the sun in an ellipse.


What are the member of the solar system thst follow or move to its orbit?

All massive objects in the solar system feel the gravitational influence of their primary and most follow an orbital path around it - the majority of the mass orbiting the Sun, including planets, asteroids, comets, etc. A common orbital path, such as the planets follow, is shaped like an ellipse with the Sun at the ellipse's focus. Moons which orbit planets follow a smaller orbital path around their primary (for example, the Earth's Moon follows a path around Earth which it completes in about a month). If objects felt mutual gravitational pull of another object but did not have sufficient relative orbital momentum, they would collide.


The type of path planets take?

Ellipse


How does a planets orbital radius affect its orbital period?

Yes. T = (2pi / sqroot of GM) multiplied by the radius^3/2. A planets mass DOES NOT affect its orbital period. A planets radius DOES affect its orbital period.


What is the shape of the orbit of planets around the sun?

An ellipse.


Term used for the shape of the planets orbit?

Ellipse.


What is the shape of a planetary path?

Planets orbit in an ellipse.


What is the shape of the planets orbiting around the sun?

An ellipse.


What path do asteroids take?

== == An ellipse. Like planets.


Outer planets have smaller orbital periods than inner planets?

They are farther away and have larger orbital periods.


Where is the sun located at one of the two in the shape of earths orbital path?

The Sun does not orbit the planets. The planets orbit the Sun. The Sun is stationary with relation to the planets' motion. The Sun does, however, orbit the Milky Way galaxy, as do the planets and everything else in the galaxy.


What geometry shape is the most like a planets orbit?

An ellipse.