NO!!!!
Every metal has a density.
The density of the metal in the crushed can remains the same as the density of the metal before it was crushed. Density is an intrinsic property of a material that does not change with physical alterations like crushing. So, the density of the metal in the can will not change due to the crushing process.
If you cut a metal in half, each half will have the same density as the original metal, so the density of each half will still be 8.4. The density of a material does not change when you cut it into pieces.
The density of the metal will remain the same. However because the volume of the object has been reduced the overall density will increase
The density of the metal in a crushed can remains the same as the density of the metal before the can was crushed. The mass of the metal remains constant; only its shape changes when the can is crushed.
how would density of a metal be affected if it were wet
The density of the metal in a crushed can remains the same as the density of the metal before the can was crushed. While the volume of the can decreases when it is crushed, the mass of the metal remains constant. Therefore, the density, which is mass divided by volume, remains unchanged.
Lithium is the metal with lowest density.
It depends on what you're measuring: the density of the aluminum or the aluminum and the space inside the can. If it's the density of the aluminum only, it doesn't change much. If it's the density of the aluminum and the space inside the can, the density greatly decreases as you are getting rid of the air, and therefore the volume, inside. This also depends on if you are using your foot or a garbage compacter.
The non-metal with the highest density is iodine, with a density of 4.92 grams per cm**3.
The greatest metal density is osmium, which has a density of around 22.59 grams per cubic centimeter.
Density is the mass of the object divided by its volume. By this principle, to determine the density of a metal, place the metal onto a scale to measure its mass. After this, place the metal into a beaker of water and measure the volume change in the beaker. Divide the mass by the volume and you get the density.