no.
Your weight is determined by the force of gravity acting on you, so it will change if the acceleration due to gravity changes. If the acceleration due to gravity increases, your weight will increase, and if it decreases, your weight will decrease.
9.8 meters per second squared on or near the Earth acceleration due to gravity is not affected by the presence or absence of air
No, the value of the acceleration due to gravity, denoted by g, is not affected by the size of the bob. The mass of an object does not affect the acceleration due to gravity experienced by that object, assuming all other factors remain constant.
weight is defined as the product of mass and gravity constant. as the value of gravity changes weight is also changed
The acceleration of falling objects is affected by gravity because gravity is the force that pulls objects toward the center of the Earth. As objects fall, they accelerate due to this gravitational force acting upon them, increasing their speed until they reach terminal velocity or the ground.
acceleration due to gravity of earth is 9.8ms-2
Acceleration due to gravity on Saturn = 11.171 m/s2 (9.807 m/s2 on Earth)
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
Increasing the mass will not have a direct effect on the experimental value of the acceleration due to gravity. The acceleration due to gravity is a constant value on Earth (approximately 9.81 m/s^2), and it is not affected by the mass of the object. However, if the mass is increased, the gravitational force acting on the object will be greater, but this will not affect the acceleration due to gravity itself.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
Acceleration due to gravityThe acceleration produced in the motion of a body under gravity is called Acceleration.
The period of a pendulum (in seconds) is 2(pi)√(L/g), where L is the length and g is the acceleration due to gravity. As acceleration due to gravity increases, the period decreases, so the smaller the acceleration due to gravity, the longer the period of the pendulum.