Yes. It is true that lighter airplanes fly farther. More weight means more down thrust is acting on the plane. This means traveling less distance. But less weight means less downthrust. So the airplane flies farther.
Goats Flying PlanesNo, they don't. The Lighter SideNo. But they do put Dogs on airplanes. When the pilot touches a button, the dog bites him.
construction paper airplanes fly further
false
Because cats do not have the capability to fly airplanes.
Because people are not able to fly without a airplanes.
You are unable to fly airplanes, however you can fly helicopters.
Type your answer here... airplanes fly in the stratosphere to avoid weather problems
It usually has greater capacity for fuel storage.
Lift makes paper airplanes fly, just as it does real planes.magic
2,000 airplanes fly in the air each day.
The answer to this question is a matter of some fairly simple physics which I will try to explain to you. First, you need to understand that most paper airplanes are not really airplanes. Airplanes fly because the shape of the wing produces lift; paper airplanes mostly fly as projectiles, meaning that they fly because you throw them. The first reason that the lighter airplane might not fly as far is in the design. Typically, the lighter paper airplane will have larger wings, and therefore, more drag. Since it is virtually impossible to make the paper airplane perfectly symmetrical, one of the wings has more drag which causes the airplane to spin and crash short of its maximum possible distance. The second reason is also related to the design. If you have a light airplane with more drag and a heavy airplane with less drag, the heavy airplane can fly much more easily. This is because the heavier airplane has less drag as well as more momentum to "push" through the air. On this note, a piece of paper crumpled into a ball will fly further than most paper airplanes I have seen just because is has lots of mass for the level of drag it induces. The crumpled piece of paper also will probably fly much straighter that the paper airplane too, just because it is fairly uniform in shape. At this point, we are completely ignoring lift; but at such a small scale with such light material, it works better that way due to the reasons above. Of course, if you put engines and control surfaces on the paper structure, you change the game entirely. Now it has to fly with lift instead of as a projectile otherwise it will crash because it has no control. This explains why real airplanes are not just big balls of metal.
The answer to this question is a matter of some fairly simple physics which I will try to explain to you. First, you need to understand that most paper airplanes are not really airplanes. Airplanes fly because the shape of the wing produces lift; paper airplanes mostly fly as projectiles, meaning that they fly because you throw them. The first reason that the lighter airplane might not fly as far is in the design. Typically, the lighter paper airplane will have larger wings, and therefore, more drag. Since it is virtually impossible to make the paper airplane perfectly symmetrical, one of the wings has more drag which causes the airplane to spin and crash short of its maximum possible distance. The second reason is also related to the design. If you have a light airplane with more drag and a heavy airplane with less drag, the heavy airplane can fly much more easily. This is because the heavier airplane has less drag as well as more momentum to "push" through the air. On this note, a piece of paper crumpled into a ball will fly further than most paper airplanes I have seen just because is has lots of mass for the level of drag it induces. The crumpled piece of paper also will probably fly much straighter that the paper airplane too, just because it is fairly uniform in shape. At this point, we are completely ignoring lift; but at such a small scale with such light material, it works better that way due to the reasons above. Of course, if you put engines and control surfaces on the paper structure, you change the game entirely. Now it has to fly with lift instead of as a projectile otherwise it will crash because it has no control. This explains why real airplanes are not just big balls of metal.