answersLogoWhite

0

true dis :) xx :p

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What is the truth table for p arrow q?

Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q


How do you construct a truth table for parenthesis not p q parenthesis if and only if p?

Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False


What is the proof for P and Not P Therefore Q?

"P and not P" is always false. If P is true, not P is false; if P is false, not P is true. In either case, combining a true and a false with the AND operator gives you false. And if you look at the truth table for the implication (the "therefore" part), when the left part is false, the result is always true.


If p is true and q is false what is the truth value or p or q?

true or false = true


Construct a Truth Table for the statement NOT p - p?

Making a truth table is actually very simple.For the statement P, it can either be true, or false.P--TFNOT P, or -p (or ~p) is the opposite. If P is true, then not P is... false!The same holds true for if P is false, what is not P? True!The truth table for ~p looks like thisP | ~p--------T | FF | T


What type of operator can be used to determine whether a specific relationship that exists between two values?

The relational operators: ==, !=, =.p == q; // evaluates true if the value of p and q are equal, false otherwise.p != q; // evaluates true of the value of p and q are not equal, false otherwise.p < q; // evaluates true if the value of p is less than q, false otherwise.p q; // evaluates true if the value of p is greater than q, false otherwise.p >= q; // evaluates true of the value of p is greater than or equal to q, false otherwiseNote that all of these expressions can be expressed logically in terms of the less than operator alone:p == q is the same as NOT (p < q) AND NOT (q < p)p != q is the same as (p < q) OR (q < p)p < q is the same as p < q (obviously)p q is the same as (q < p)p >= q is the same as NOT (p < q)


Is not q then not p true or false?

false


True or false When the polynomial in P(x) is divided by (x-a) the remainder equals P(a)?

False (apex)


If P is true and Q is false what is the truth value of P or Q?

If p is true and q is false, p or q would be true. I had a hard time with this too but truth tables help. When using P V Q aka p or q, all you need is for one of the answers to be true. Since p is true P V Q would also be true:)


Is p and q and not p a contradiction?

Yes, because a variable cannot be both true and not true.


This statement is false brain teaser?

Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.


is this statement true or falseThe steps for constructing a line perpendicular to a given line through point P are the same whether P lies on the line or not.?

false