Yes because multi means more than one in programming, just like it does in English. No isn't that a surprise. Have you read any good programming text books lately.
A two-dimensional array is the simplest multi-dimensional array and is implemented as a one-dimensional array where every element is itself a one-dimensional array. We can imagine a two-dimensional array as being a table of rows and columns where every row is an array in its own right. A three-dimensional array is simply a one-dimensional array of two-dimensional arrays, which can be imagined as being an array of tables. Extending the concept, a four-dimensional array is a table of tables. Multi-dimensional arrays may be jagged. That is, a two-dimensional array may have rows of unequal length. Unlike regular arrays, jagged arrays cannot be allocated in contiguous memory. Instead, we use the outer array (the first dimension) to store pointers to the inner arrays. An array of strings (character arrays) is an example of a two-dimensional jagged array.
one dementional array and two dementional array
An array is simply a contiguous block of memory containing two or more elements. There are two types of array: a static array which is allocated on the stack at compile time; and a dynamic array which is allocated on the heap at runtime. Both can be one-dimensional or multi-dimensional. A one-dimensional array can be likened to a row (or column) of chessboard squares, with as many squares as required to store all the elements. A multi-dimensional array is any array with two or more dimensions. A two-dimensional array can be likened to the whole chessboard, where any square can be identified by its row and column index. However the dimensions needn't be equal. A two-dimensional array can also be imagined as a one-dimensional array where every element is simply another one-dimensional array. Three-dimensional arrays can be likened to a cube, or as a one-dimensional array of two-dimensional arrays. A four-dimensional array can be linked to a one-dimensional array of three-dimensional arrays, and so on. Although every one-dimensional array must be allocated in contiguous memory, multi-dimensional arrays can be dynamically allocated so that each dimension is itself a separately allocated one-dimensional array of pointers to the next dimension, making it possible to allocate extremely large arrays over a series of smaller allocations rather than as a single contiguous block.
A single dimensional array is an array of items. A two-dimensional array is an array of arrays of items.
A one dimensional array is a scalar value repeated one or more times.A two dimensional array is an array of one dimensional arrays.A three dimensional array is an array of two dimensional arrays, and so forth.The one dimensional array is like a list of things, where the two dimensional array is like an array of things. (Think one row of a spreadsheet versus the whole spreadsheet.)[addendum]Every level of array depth is also a level of pointer depth. For example: A 3 dimensional int array is an int***. So a one dimensional int array is an int*, and a two dimensional int array is an int**. This is only important if you are doing pointer work, but it can become very important.
A two-dimensional array.
Do you perhaps mean -- a two-dimensional array? A two dimensional array is nothing more than a one-dimensional array where every element is a one-dimensional array. int matrix[4][5]; C is a row-major language thus the first dimension refers to the number of rows. Here we have declared an array of 4 rows, where each row is an array of 5 elements of type int.
A two dimensional array is a one-dimensional array of one-dimensional arrays. That is, just as we can have an array of integers, we can also have an array of integer arrays. This idea can be extended such that we can have an array of two-dimensional arrays (a three-dimensional array), and so on. We typically use a two-dimensional array to represent a table of rows and columns, where each row is a one-dimensional array.
You can sort an array with any method you want, but there is a built-in qsort function, declared in stdlib.h (see the attached link).bubble sort, quick sort, insertion sort, merge sort, radix sort and lot more..merge sort is the most efficient one..
The simplest way to create a table in C is to use a two-dimensional array.
A two-dimensional array is the simplest multi-dimensional array and is implemented as a one-dimensional array where every element is itself a one-dimensional array. We can imagine a two-dimensional array as being a table of rows and columns where every row is an array in its own right. A three-dimensional array is simply a one-dimensional array of two-dimensional arrays, which can be imagined as being an array of tables. Extending the concept, a four-dimensional array is a table of tables. Multi-dimensional arrays may be jagged. That is, a two-dimensional array may have rows of unequal length. Unlike regular arrays, jagged arrays cannot be allocated in contiguous memory. Instead, we use the outer array (the first dimension) to store pointers to the inner arrays. An array of strings (character arrays) is an example of a two-dimensional jagged array.
It is not possible to declare a two-dimensional array using an array of pointers in any programming language, but many programming languages support declarations of N-dimensional arrays of pointers.The exact syntax varies with the programming language, and requires support for N-dimensional arrays and pointers. In C, the following declares an array of pointer variables, each implemented as pointer to the generic type "void":void* array_1D[10];The type of the expression array_1D is "void * const."The following example expands on the previous one by declaring a two-dimensional array of "void" pointers:void* array_2D[10][20];The type of the expression array_2D is "void ** const."The last example declares a 3-dimensional array of "void" pointers, which can be seen as a 2-dimensional array of arrays of pointers:void* array_3D[10][20][30];