The sun is neither a supernova nor a white dwarf. The sun is a main sequence star. A supernova is not a kind of star: it is the explosion of a massive star.
The sun is not big enough to supernova. It's not even big enough to nova. The fate of the sun is a Red giant, a white dwarf then a black dwarf. Therefore we don't need to worry about the sun becoming a supernova. We need to worry about the sun expand to the size where it touches Jupiter.
A Chandrasekhar mass is the maximum mass limit (about 1.4 times the mass of the Sun) that a white dwarf star can have before it collapses under its own gravity and triggers a supernova explosion. When a white dwarf accretes matter from a companion star or merges with another white dwarf, exceeding the Chandrasekhar mass, it can collapse and explode as a Type Ia supernova.
No. When the sun dies it will expel its outer layers in a series of gradual pulses and leave behind a white dwarf.
A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".
A white dwarf supernova occurs when a white dwarf star in a binary system accretes material from a companion star, causing it to exceed the Chandrasekhar limit (1.4 solar masses). The core then undergoes a runaway nuclear fusion reaction, leading to a catastrophic explosion that destroys the white dwarf.
White Dwarf, Sun, Red Giant, Supernova
The sun is not big enough to supernova. It's not even big enough to nova. The fate of the sun is a Red giant, a white dwarf then a black dwarf. Therefore we don't need to worry about the sun becoming a supernova. We need to worry about the sun expand to the size where it touches Jupiter.
The maximum size of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. If a white dwarf exceeds this limit, it can collapse further and ignite as a supernova.
When a white dwarf exceeds the Chandrasekhar limit of about 1.4 times the mass of the Sun, electron degeneracy pressure is no longer able to support the star against gravity. This leads to the collapse of the white dwarf, resulting in a supernova explosion.
The upper limit to the mass of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. Beyond this point, the white dwarf may collapse and explode in a supernova event.
A Chandrasekhar mass is the maximum mass limit (about 1.4 times the mass of the Sun) that a white dwarf star can have before it collapses under its own gravity and triggers a supernova explosion. When a white dwarf accretes matter from a companion star or merges with another white dwarf, exceeding the Chandrasekhar mass, it can collapse and explode as a Type Ia supernova.
No. When the sun dies it will expel its outer layers in a series of gradual pulses and leave behind a white dwarf.
A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".
White Dwarf.
A white dwarf supernova occurs when a white dwarf star in a binary system accretes material from a companion star, causing it to exceed the Chandrasekhar limit (1.4 solar masses). The core then undergoes a runaway nuclear fusion reaction, leading to a catastrophic explosion that destroys the white dwarf.
No, stars less massive than the Sun do not have enough mass to undergo a supernova explosion. Instead, they may end their lives as a white dwarf or, if they are even less massive, a planetary nebula. Supernovae are events associated with more massive stars.
The white dwarf collapses under its own gravity. This starts very rapid nuclear fusion reactions. It explodes as a supernova and "stuff" is scattered into space. Essentially nothing of the white dwarf, as an object, remains.