answersLogoWhite

0

A Chandrasekhar mass is the maximum mass limit (about 1.4 times the mass of the Sun) that a white dwarf star can have before it collapses under its own gravity and triggers a supernova explosion. When a white dwarf accretes matter from a companion star or merges with another white dwarf, exceeding the Chandrasekhar mass, it can collapse and explode as a Type Ia supernova.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Natural Sciences

Why will the sun never explode in a supernova?

The Sun is not massive enough to undergo a supernova explosion. A supernova occurs when a massive star runs out of fuel, collapses under its own gravity, and then explodes. The Sun is not massive enough to go through this process and will instead eventually evolve into a red giant and then into a white dwarf.


The minimum mass of a star required for it to become a neutron star is?

Approximately 1.4 times the mass of the sun, known as the Chandrasekhar limit, is required for a star to become a neutron star. If a star has a mass greater than this limit, it will likely undergo a supernova explosion and collapse into a neutron star.


What is the supernovae trigger model?

The supernova trigger model proposes that the explosion of a white dwarf in a binary star system can be triggered by the accretion of material from its companion star. As the white dwarf gains mass, it eventually reaches a critical limit, known as the Chandrasekhar limit, leading to a runaway nuclear fusion reaction and resulting in a supernova explosion.


What kind of star is most likely to become a white-dwarf supernova?

A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".


What can you conclude about a Type I supernova?

It is right to conclude that a type I supernova is what it is because it managed to take out so much matter from its surrounding neighbor until it exceeded a 1.4M Chandrasekhar limit. Exceeding that limit meant that it had to tip over.

Related Questions

Why will the sun never explode in a supernova?

The Sun is not massive enough to undergo a supernova explosion. A supernova occurs when a massive star runs out of fuel, collapses under its own gravity, and then explodes. The Sun is not massive enough to go through this process and will instead eventually evolve into a red giant and then into a white dwarf.


When a white dwarf exceeds the Chandrasekhar limit what happens?

When a white dwarf exceeds the Chandrasekhar limit of about 1.4 times the mass of the Sun, electron degeneracy pressure is no longer able to support the star against gravity. This leads to the collapse of the white dwarf, resulting in a supernova explosion.


What is the upper limit to the mass of a white dwarf?

The upper limit to the mass of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. Beyond this point, the white dwarf may collapse and explode in a supernova event.


What is Chandrasekhar's Limit?

The Chandrasekhar Limit, also called the Chandrasekhar mass, is the point beyond which the "electron degeneracy pressure" within a white dwarf star no longer balances the star's own gravity. It places an upper limit on the possible mass of a white dwarf. If a white dwarf's gravity pulls material away from a neighboring star, adding it to the white dwarf and increasing its mass, the Chandrasekhar mass (roughly 1.4 times the mass of our Sun) can eventually be reached and surpassed. When the balance between electron degeneracy pressure and gravity ends, the force of gravity rapidly collapses the white dwarf, and the resulting pressure and density result in a violent outward explosion that destroys the white dwarf. In Astronomy, this is known as a type Ia supernova. There have been a small number of type Ia supernovae (supernova "2007if" was the second known) which were believed to occur at masses significantly above the Chandrasekhar limit. The prevailing theory is that in these cases, two white dwarves collided, resulting in the limit being abruptly exceeded.


What is the maximum size of a white dwarf?

The maximum size of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. If a white dwarf exceeds this limit, it can collapse further and ignite as a supernova.


The minimum mass of a star required for it to become a neutron star is?

Approximately 1.4 times the mass of the sun, known as the Chandrasekhar limit, is required for a star to become a neutron star. If a star has a mass greater than this limit, it will likely undergo a supernova explosion and collapse into a neutron star.


What neutron star is smaller than white dwarfs are thought to be remnants of .?

A neutron star is the remnant of a star, which - at the end of its life, and AFTER possibly losing a lot of mass (for instance, in a supernova explosion) has a remaining mass that is greater than the so-called Chandrasekhar limit.


What happens if the mass of a white dwarf reaches the 1.4 solar mass limit?

If the mass of a white dwarf reaches the 1.4 solar mass limit, it will no longer be able to support itself against gravity through electron degeneracy pressure. This will trigger a runaway fusion reaction of carbon and oxygen, leading to a supernova explosion known as a Type Ia supernova.


What is the supernovae trigger model?

The supernova trigger model proposes that the explosion of a white dwarf in a binary star system can be triggered by the accretion of material from its companion star. As the white dwarf gains mass, it eventually reaches a critical limit, known as the Chandrasekhar limit, leading to a runaway nuclear fusion reaction and resulting in a supernova explosion.


What kind of star is most likely to become a white-dwarf supernova?

A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".


Why do some stars create a black hole and others do not?

Only the largest stars, that end as supernovae and leave a core 3 or more times as massive as the Sun in the solar system in which we exist can form black holes. Post-supernova cores that do not reach this mass of 3 solar masses are simply not massive enough to be crunched to the singularity of a black hole. More scientifically, the mass that must be exceeded to collapse into a black hole is called the Chandrasekhar limit, after the physicist, a certain Mr. Chandrasekhar.


When does a type 2 supernova begin to explode?

A massive red supergiant star will eventually explode as Type II supernova. That happens when the high mass star has run out of its nuclear "fuel". A series of nuclear fusion reactions finally ends at the nucleus of iron. A massive core of iron remains and iron can't be used to produce energy by nuclear fusion. The core collapses under gravity and the energy released throws the outer layers of the star into space in a supernova explosion. This is a Type II supernova. Sometimes it's referred to as a "core collapse" supernova, for obvious reasons. A bit more detail, if needed: A "high mass star" in this context is one with a mass of at least 8 times the mass the Sun. They develop into red supergiant stars. The mass of the iron core needs to be over the "Chandrasekhar mass" of about 1.4 times the Sun's mass. A core of that mass is unable to resist gravitational collapse. Depending on the mass of the iron core, collapse may stop at a "neutron star". Otherwise there is a complete collapse to a "black hole". See "Sources and related links", below.