On the duals of Lebesgue-Bochner $L^ p$ spaces

Author:
Bahattin Cengiz

Journal:
Proc. Amer. Math. Soc. **114** (1992), 923-926

MSC:
Primary 46E40

DOI:
https://doi.org/10.1090/S0002-9939-1992-1027088-7

MathSciNet review:
1027088

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(X,\mathcal {A},\mu )$ be an *arbitrary* positive measure space. We prove that there exist an extremally disconnected (locally) compact Hausdorff space $Y$ and a perfect (regular) Borel measure $\nu$ on $Y$ such that ${L^p}(\mu ,\textrm {E}) \simeq {L^p}(\nu ,E)$ for all $1 \leq p < \infty$ and any Banach space $E$. If ${E^*}$ is separable, then ${L^p}(\mu ,\textrm {E})* \simeq {L^q}(\mu ,{\textrm {E}^*})$ for all $1 < p < \infty ,\;\frac {1}{p} + \frac {1}{q} = 1$ , and ${L^1}(\mu ,\textrm {E})* \simeq {L^\infty }(\nu ,{\textrm {E}^*}) \simeq C(\beta Y,\textrm {E}_*^*)$, where $E_*^*$ denotes ${E^*}$ endowed with the weak* topology. In particular ${L^1}{(\mu )^*} \simeq {L^\infty }(\nu )$.

- Michael Cambern and Peter Greim,
*The dual of a space of vector measures*, Math. Z.**180**(1982), no. 3, 373–378. MR**664522**, DOI https://doi.org/10.1007/BF01214177 - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR**0453964** - N. Dinculeanu,
*Vector measures*, Hochschulbücher für Mathematik, Bd. 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR**0206189**
N. Dunford and J. J. Schwartz, - Edwin Hewitt and Karl Stromberg,
*Real and abstract analysis*, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR**0367121** - H. Elton Lacey,
*The isometric theory of classical Banach spaces*, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 208. MR**0493279** - J. Schwartz,
*A note on the space $L_p^*$*, Proc. Amer. Math. Soc.**2**(1951), 270–275. MR**40588**, DOI https://doi.org/10.1090/S0002-9939-1951-0040588-5

*Linear operators*, Part I, Interscience, New York and London, 1967.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E40

Retrieve articles in all journals with MSC: 46E40

Additional Information

Article copyright:
© Copyright 1992
American Mathematical Society