in prokaryotes only self spilicing and tRNA splicing are present there is no splicosomes are present.
No, splicing does not occur during transcription. Splicing is a process that happens after transcription, where non-coding regions of the RNA molecule are removed and the coding regions are joined together to form the final mRNA molecule.
No, photophosphorylation occurs in both prokaryotes and eukaryotes. It is a process in photosynthesis where light energy is used to phosphorylate ADP to ATP. In prokaryotes, it mainly occurs in the thylakoid membranes of the chloroplasts, while in eukaryotes, it occurs in the chloroplasts of plant cells.
Protein synthesis occurs in cellular structures called ribosomes , found out-side the nucleus. The process by which genetic information is transferred from the nucleus to the ribosomes is called transcription. During transcription, a strand of ribonucleic acid (RNA) is synthesized.
If RNA splicing didn't occur, the pre-mRNA would not be processed properly to remove introns, resulting in an mRNA that contains irrelevant genetic information. This would prevent the proper translation of the mRNA into protein, likely leading to errors in protein structure and potentially disrupting cellular function.
In prokaryotes, DNA replication occurs in the cytoplasm. The replication process begins at the origin of replication on the DNA molecule and proceeds bidirectionally. Multiple replication fork structures are formed to speed up the replication process.
nucleus
No, splicing does not occur during transcription. Splicing is a process that happens after transcription, where non-coding regions of the RNA molecule are removed and the coding regions are joined together to form the final mRNA molecule.
Streptococci
The mRNA product is shorter than the gene coding for it as a result of splicing. Therefore the organism in question is likely to be a Eukaryote, as Prokaryotes rarely undergo splicing.
Yes, it only occurs in eukartoyic mRNA as they only have the non coding region (introns)
nucleus for eukaryotes, cytoplasm for prokaryotes.
Yes, endocytosis does not occur in prokaryotes because they lack membrane-bound organelles and do not perform phagocytosis, pinocytosis, or receptor-mediated endocytosis like eukaryotic cells. Instead, prokaryotes rely on other mechanisms such as simple diffusion, facilitated diffusion, and active transport to take in nutrients and molecules.
In prokaryotes, the processes of transcription and translation occur simultaneously in the cytoplasm, allowing for a rapid cellular response to an environmental cue.
Post-translational modifications of proteins do occur in prokaryotes, but they are generally less complex than in eukaryotes. Prokaryotes lack certain cellular compartments where modifications like glycosylation occur in eukaryotes. Additionally, prokaryotes have simpler metabolic pathways that may not require extensive post-translational modifications for protein function.
No, photophosphorylation occurs in both prokaryotes and eukaryotes. It is a process in photosynthesis where light energy is used to phosphorylate ADP to ATP. In prokaryotes, it mainly occurs in the thylakoid membranes of the chloroplasts, while in eukaryotes, it occurs in the chloroplasts of plant cells.
In prokaryotes, DNA is stored in the cytoplasm. also prokaryotes have no nucleus In prokaryotes, transcription and translation happen at the same time.
Protein synthesis occurs in cellular structures called ribosomes , found out-side the nucleus. The process by which genetic information is transferred from the nucleus to the ribosomes is called transcription. During transcription, a strand of ribonucleic acid (RNA) is synthesized.