That's usually called the object's "weight".
Like say if you're talking about the forces of gravity between you and the Earth,
the force of gravity acting on you is your weight on the Earth, and the force of
gravity acting on the Earth is the Earth's weight on you, and they're equal.
No. The force of gravity acting on an object's mass is weight.
Weight is the measure of the force of gravity acting on an object. Mass is a measure of the amount of matter in an object. Weight depends on both the mass of the object and the acceleration due to gravity.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
The force produced by gravity acting on mass is known as weight. It is the force exerted by gravity on an object due to its mass. Weight is a force measured in newtons and is directly proportional to an object's mass.
Newton's second law of motion states that the force acting on an object is equal to the object's mass multiplied by its acceleration (force = mass x acceleration). In the case of gravity, the force of gravity acting on an object is directly proportional to the object's mass. This means that the force of gravity on an object is equal to the object's mass multiplied by the acceleration due to gravity.
The relationship between the mass of an object and the force of gravity acting on it is described by the equation ma mg. This equation shows that the force of gravity (Fg) acting on an object is equal to the mass of the object (m) multiplied by the acceleration due to gravity (g). In simpler terms, the force of gravity on an object is directly proportional to its mass.
No, mass is a measure of the amount of matter in an object, while weight is the measure of the force of gravity acting on it. The weight of an object is calculated by multiplying its mass by the acceleration due to gravity.
The amount of gravity acting on an object is determined by its mass. The greater the mass of the object, the stronger the force of gravity acting on it. Gravity is a force that pulls objects towards each other, with the strength of the force depending on the masses of the objects and the distance between them.
The weight of an object is the force of gravity.
No, mass does not vary according to the force of gravity. Mass is a measure of how much matter an object has. Weight, however, is a measure of the force of gravity acting on an object; as such, weight varies according to gravitational field strength.
No. Mass is a property of the object and doesn't change, no matter where the object goes or what's happening to it. The force of gravity on the object is its "weight" and that can change. It depends on, for example, what planet the object is on.
The force of gravity acting on an object is determined by the mass of the object and the acceleration due to gravity (9.81 m/s^2 on Earth). The formula to calculate the force of gravity is F = m * g, where F is the force of gravity, m is the mass of the object, and g is the acceleration due to gravity.