answersLogoWhite

0


Best Answer

Two different DNA sequences

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Two different restriction enzymes that recognize the same restriction site known as?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Where are restriction enzymes obtained from?

Restriction enzymes are obtained from many prokaryotes and about 1500 enzymes with known sequence recognition sites have been isolated. Restriction enzyme is a protein that recognize a specific, short nucelotide sequence.


What does a geneticist use to cut DNA at specific base sequences?

Restriction enzymes, also known as restriction endonucleases, are used to cut DNA into smaller fragments. Restriction enzymes are found in bacteria, where they act like molecular scissors by cutting up DNA from invading viruses or bacteriophages. Each restriction enzyme recognizes a specific nucleotide sequence and cuts the DNA at that site. This process makes restriction enzymes extremely useful in biotechnology where they are used in procedures such as DNA cloning, DNA fingerprinting, and genetic engineering. There are hundreds of known restriction enzymes, and each one was named for the bacteria from which it was isolated. For example, EcoRI was isolated from Escherichia coli and HaeIII from Haemophilus aegyptius.


Why the first restriction endonuclease is known as Hind2 and not Hind1?

Restriction enzymes are named based on the organism in which they were discovered. For example, the enzyme Hind III was isolated from Haemophilus influenzae, strain Rd. The first three letters of the name are italicized because they abbreviate the genus and species names of the organism. The fourth letter typically comes from the bacterial strain designation. The Roman numerals are used to identify specific enzymes from bacteria that contain multiple restriction enzymes. Typically, the Roman numeral indicates the order in which restriction enzymes were discovered in a particular strain.There are three classes of restriction enzymes, labeled types I, II, and III. Type I restriction systems consist of a single enzyme that performs both modification (methylation) and restriction activities. These enzymes recognize specific DNA sequences, but cleave the DNA strand randomly, at least 1,000 base pairs(bp) away from the recognition site. Type III restriction systems have separateenzymes for restriction and methylation, but these enzymes share a common subunit. These enzymes recognize specific DNA sequences, but cleave DNA at random sequences approximately twenty-five bp from the recognition sequence. Neither type I nor type III restriction systems have found much application in recombinant DNA techniques.Type II restriction enzymes, in contrast, are heavily used in recombinant DNA techniques. Type II enzymes consist of single, separate proteins for restriction and modification. One enzyme recognizes and cuts DNA, the other enzyme recognizes and methylates the DNA. Type II restriction enzymes cleave the DNA sequence at the same site at which they recognize it. The only exception are type IIs (shifted) restriction enzymes, which cleaveDNA on one side of the recognition sequence, within twenty nucleotides of the recognition site. Type II restriction enzymesdiscovered to date collectively recognize over 200 different DNA sequences.


DNA strands can be clipped crosswise at selected positions by using enzymes called?

DNA can be cut into smaller fragments by enzymes (which are proteins) known as restriction endonucleases (REN's). These enzymes are sequence specific - meaning they produce a cut only at a particular site on the DNA strand. This site where the cut is produced is called the restriction site. Restriction sites are 4 - 6 nucleotides in length. Every restriction enzyme has a different restriction site. This property allows researchers to treat two different DNA samples with the same set of restriction enzymes and then analyze the resulting fragments.A. DNA finger printing


What determines how DNA will be cut by a restriction enzyme?

Restriction enzymes cut DNA at specific sites called restriction sites. These restriction sites are typically 6 - 8 nucleotides in length and have a defined set of nucleotide bases. For example, the restriction enzyme Eco R1 cuts at the site: AGGTTC. Therefore, if the target DNA contains the above sequence, Eco R1 is able to cut it within the restriction site. Hence, by looking into the target site and which restriction enzymes are being used, on can make an accurate estimate of where the target DNA will be cut


What are restriction enzymes Explain the significance of these enzymes in recombinant DNA technology.?

A restriction enzyme (or restriction endonuclease) is an enzyme that cuts double-stranded or single stranded DNA at specific recognition nucleotide sequences known asrestriction sites....................refer in this website en.wikipedia.org/wiki/Restriction_enzyme


What does restriction endonuclease do?

They cut DNA at specific sequences. Restriction endonucleases work by cutting DNA at specific sequences. The places that are cut are known as restriction sites.


What are restriction enzymes?

Restriction enzymes (also known as restriction endonucleases) are proteins which cut DNA up at specific sequences in the genome. For example, the commonly used restriction endonuclease EcoRI recognizes every point in DNA with the sequence GAATTC, and cuts at the point between the Guanine and Adenine. Interestingly, the recognition sequences for most restriction endonucleases are genetic palindromes, e.g., the sequence reads exactly the same backwards on the complementary strand. In the case of EcoRI, the two complementary DNA strands for the recognition sequence are: 5'--GAATTC ---3'3'--CTTAAG--5'


Function of restriction enzymes?

They cut strands of DNA at specific sites.


What is the cutting of DNA by specific enzymes known as restriction endonucleases the cut piece from one organism is added to the DNA of another?

GE


Why are restriction enzymes necessary in the DNA fingerprinting process?

because DNA is the process of getting heriderity informationAns2:Restriction enzymes clip the DNA strand and create short fragments that can be processed. If you clip the strand at a known combination, you will know that every resulting fragment ends with that combination. Knowing the lengths of the fragments allows you to identify where that combination would be located on the complete strand.


What is the purpose of restriction enzymes?

There main purpose is to cut up viral DNA that invades bacteria. Since they do this at definite sites, depending on which restriction enzyme is used, they can be used in genetic recombination exercises. Inserting sections of DNA into bacterial plasmids so that desired products will be made by these bacteria.