answersLogoWhite

0

What are antibubbles?

Updated: 8/17/2019
User Avatar

Wiki User

11y ago

Best Answer

An antibubble is the opposite of a bubble. A soap bubble in air is a thin film of liquid surrounding air. An antibubble in liquid is a thin film of air surrounding liquid.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

14y ago

a skin of air usually found in water

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are antibubbles?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you make antibubbles?

The key to creating antibubbles is to make a very clean water surface. The tiniest bit of surface dirt will prevent antibubbles from forming, or will make them quickly pop. To create a clean surface, allow a container of water to continuously overflow . The overflow causes the surface of the water to stretch and be pulled sideways, and any dirt on the water surface will be skimmed off. Fill your large jar, place it in the sink, and adjust your faucet to allow a continuous stream of water to pour in and overflow the jar.Add a little dish-soap (household detergent) to the jar of water and stir well. Fill your glue bottle with soapy water from the jar.To become familiar with how antibubbles behave, first try making some "globules." Spray some droplets up from below, so the droplets land on the surface of the water. If you can build up lots of globules, you'll see them bounce off each other, or "pop" and join the rest of the water. Sometimes they'll join together into larger and larger ones.You can demonstrate that the thin film of air is disrupted by electrostatic forces. Comb your hair to give the comb an electric charge imbalance. Spray some globules on the surface of the water, then wave the charged comb near them. They will abruptly vanish! They all "pop" and rejoin the water. The electrified comb causes the water in the globule to split into areas of positive and negative charge. This imbalanced charge attracts the water below the globule, and the globule crashes into the water below. On a dry day, your body can become electrified from walking on the floor, and this can disrupt antibubbles and globules. If your globules and antibubbles refuse to form, try touching the metal faucet to remove any charge imbalance from yourselfOK, let's make some real antibubbles. Follow the three steps below. First place the tip of your water-filled squirt bottle very near the water surface. Give it a gentle puff and create a single water globule. Immediately give a longer squeeze. This will send a jet of water through the globule and down into the jar. If your squeeze is gentle and brief, the water jet will take the air layer along. A long silvery worm will extend into the water. This "worm" is water which is coated with air. Do this several times, and sometimes the worm will break up into antibubbles of different sizes.


What are facts about bubbles?

Who invented bubbles? The Incans.Liquid bubble, a globule of one substance encased in another, usually air in a liquidSoap bubble, a bubble formed by soapy waterAntibubble, a droplet of liquid surrounded by a thin film of gasA bubble is a globule of one substance in another, usually gas in a liquid. Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.An antibubble is a droplet of liquid surrounded by a thin film of gas, as opposed to a gas bubble, which is a sphere of gas surrounded by a liquid. Antibubbles are formed when liquid drops or flows turbulently into the same or another liquid. They can either skim across the surface of a liquid such as water, in which case they are also called water globules, or they can be completely submerged into the liquid to which they are directed.BackgroundAntibubbles are a common but widely unrecognised phenomenon, in part because of their resemblance to air bubbles, and in part because of their typically transient, or short-lived, nature. With certain (soapy) solutions, they can be made to last much longer. Antibubbles are easily created by allowing a tap to drip into a container of water to which a drop or two of soap has been added. The soap reduces the water's surface tension and allows the skin of air surrounding the droplet to remain in place for more than just a fraction of a second.Just as soap bubbles, with air inside and air outside, have negative buoyancy and tend to sink towards the ground, so antibubbles, with water inside and water outside have positive buoyancy and tend to rise towards the water surface. But again, just as soap bubbles can be filled with a lighter gas to give them positive buoyancy, so antibubbles can be filled with a heavier liquid to give them negative buoyancy. Using a drinking straw to drop droplets of sugar solution onto soapy water will produce antibubbles that sink.Antibubbles usually pop when they touch the bottom or the side of the vessel containing the liquid. This can be prevented by tipping a few teaspoons of sugar into the soapy water and giving it some time to dissolve (but without stirring it). This will produce a denser layer of sugary water at the bottom of the container. Antibubbles made from sugar solution will then sink through the water and rest on top of the denser layer at the bottom. Antibubbles made this way can last for several minutes.The layers of it are water, which it is submerged in, air, and the water trapped in the air.Differences between air bubbles and antibubblesThe behavior of antibubbles differs from that of air bubbles in three primary ways, and provides a ready means of identification: Antibubbles are held in place by surface tension, and move rapidly across the surface of the water. They can also be seen to ricochet off other objects in the water (such as air bubbles) and off the sides of a container in a manner similar to that of billiard balls.Under ordinary circumstances, antibubbles are short-lived. An air bubble with a soap skin may last several minutes. Antibubbles often have lifetimes of a few seconds or less; however, if the electrical potential between the inner and outer fluid is equalized, antibubbles can last as long as, or longer than, air bubbles.Antibubbles refract light in a different manner than air bubbles. Because they are water droplets, light entering them is refracted back toward its source in the same manner as rainbows are produced. Because of this refraction, antibubbles have a bright appearance.When one bubble meets with another, the resulting union is always one of total sharing and compromise (Human beings could learn a lot from bubbles.) Since bubbles always try to minimize surface area two bubbles will merge to share a common wall. If the bubbles are the same size as the bubbles to the left, this wall will be flat. If the bubbles are different sized, the smaller bubble, which always has a higher internal pressure, will bulge into the larger bubble.Regardless of their relative sizes, the bubbles will meet the common wall at an angle of 120 degrees. This is easy to see in the bubble picture to the right. All three bubbles meet at the center at an angle of 120 degrees. Although the mathematics to prove this are beyond the scope of this article, the 120 degree rule always holds, even with complex bubble collections like a foam.If you take two sheets of clear glass or plastic separated by about one-half inch, soak them in soapy solution and then blow bubbles between the sheets, you will get many bubble walls. If you look closely, you will notice that all of the vertices where three bubble walls meet (and there are always three,) form 120 degree angles. If your bubbles are of uniform size, you will notice that the cells form hexagons and start to look much like the cells of a beehive. Bees, like bubbles, try to be as efficient as possible when making the comb. They want to use the minimum possible amount of wax to get the job done. Hexagonal cells are the ticket.